This file is indexed.

/usr/include/tulip/GlShaderProgram.h is in libtulip-dev 4.4.0dfsg2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux 1 and Inria Bordeaux - Sud Ouest
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
///@cond DOXYGEN_HIDDEN


#ifndef GL_SHADER_PROGRAM
#define GL_SHADER_PROGRAM

#if defined(_MSC_VER)
#include <Windows.h>
#endif

#if defined(__APPLE__)
#include <OpenGL/gl.h>
#else
#include <GL/gl.h>
#endif

#include <string>
#include <vector>

#include <tulip/tulipconf.h>
#include <tulip/Matrix.h>
#include <tulip/Color.h>

namespace tlp {

enum ShaderType {Vertex, Fragment, Geometry};

/**
 * \brief A class to manage shader objects, components of a shader program
 *
 * This class allow to create and compile OpenGL shader object. Shaders are used to program the graphics processing unit (GPU) rendering pipeline.
 * The three existing types of shaders are managed :
 *
 *  -> Vertex shader : run once for each vertex given to the graphics processor. The purpose is to transform each vertex's 3D position in virtual space
 *     to the 2D coordinate at which it appears on the screen (as well as a depth value for the Z-buffer).
 *     Vertex shaders can manipulate properties such as position, color, and texture coordinate, but cannot create new vertices.
 *     The output of the vertex shader goes to the next stage in the pipeline, which is either a geometry shader if present or the rasterizer otherwise.
 *
 *  -> Geometry shader : can add and remove vertices from a mesh. Geometry shaders can be used to generate geometry procedurally
 *     or to add volumetric detail to existing meshes that would be too costly to process on the CPU. If geometry shaders are being used,
 *     the output is then sent to the rasterizer.
 *
 *  -> Fragment shader (Pixel shader) : calculate the color of individual pixels. The input to this stage comes from the rasterizer,
 *     which fills in the polygons being sent through the graphics pipeline.
 *
 * Shaders source codes have to be written with the "OpenGL Shading Language (GLSL)"
 */
class TLP_GL_SCOPE GlShader {

  friend class GlShaderProgram;

public :

  /**
   * Vertex and Fragment shader constructor
   *
   * Use this constructor to create either a vertex shader or a fragment shader
   *
   * \param shaderType Type of the shader to create, Vertex or Fragment
   */
  GlShader(ShaderType shaderType);

  /**
   * Geometry shader constructor
   *
   * Use this constructor to create a geometry shader
   *
   * \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
   *        (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
   *
   * \param outputPrimitiveType the type of graphics primitives the geometry shader will output
   *        (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
   */
  GlShader(GLenum inputPrimitiveType, GLenum outputPrimitiveType);

  /**
   * GlShader destructor
   */
  ~GlShader();

  /**
   * Return the GL identifier of this shader object
   */
  GLuint getShaderId() const {
    return shaderObjectId;
  }

  /**
   * Return the type of the shader (Vertex, Geometry or Fragment)
   */
  ShaderType getShaderType() const {
    return shaderType;
  }


  /**
   * Method only relevant for geometry shaders. Return the graphic primitive type this geometry shader takes as input.
   */
  GLenum getInputPrimitiveType() const {
    return inputPrimitiveType;
  }

  /**
   * Method only relevant for geometry shaders. Return the graphics primitives type this geometry shader will output.
   */
  GLenum getOutputPrimitiveType() const {
    return outputPrimitiveType;
  }

  /**
   * Method only relevant for geometry shaders. Set the graphic primitive type this geometry shader takes as input.
   * Note that when modifying the input primitive type, the associated shader program (whose object is from type GlShaderProgram)
   * has to be relinked for changes to take effect.
   *
   * \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
   *        (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
   */
  void setInputPrimitiveType(const GLenum inputPrimitiveType) {
    this->inputPrimitiveType = inputPrimitiveType;
  }

  /**
   * Method only relevant for geometry shaders. Set the graphics primitives type this geometry shader will output.
   * Note that when modifying the output primitive type, the associated shader program (whose object is from type GlShaderProgram)
   * has to be relinked for changes to take effect.
   *
   * \param outputPrimitiveType the type of graphics primitives the geometry shader will output
   *        (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
   */
  void setOutputPrimitiveType(const GLenum outputPrimitiveType) {
    this->outputPrimitiveType = outputPrimitiveType;
  }

  /**
   * Set the shader source code from a C string and compile it.
   *
   *  \param shaderSrc a C string containing the shader source code
   */
  void compileFromSourceCode(const char *shaderSrc);

  /**
   * Set the shader source code from a C++ string and compile it.
   *
   *  \param shaderSrc a C++ string containing the shader source code
   */
  void compileFromSourceCode(const std::string &shaderSrc);

  /**
   * Set the shader source code from a file and compile it.
   *
   *  \param shaderSrcFilename the absolute path of the file containing the shader source code
   */
  void compileFromSourceFile(const std::string &shaderSrcFilename);

  /**
   * Return true if the shader compilation was successfull, false otherwise
   */
  bool isCompiled() const {
    return shaderCompiled;
  }

  /**
   * Return the log output by the shader compiler
   */
  std::string getCompilationLog() const {
    return compilationLog;
  }

private :

  void setAnonymousCreation(const bool anonymousCreation) {
    this->anonymousCreation = anonymousCreation;
  }
  bool anonymouslyCreated() const {
    return anonymousCreation;
  }

  void compileShaderObject(const char *shaderSrc);

  ShaderType shaderType;
  GLuint shaderObjectId;
  GLenum inputPrimitiveType, outputPrimitiveType;
  bool shaderCompiled;
  std::string compilationLog;
  bool anonymousCreation;

};

/**
 * \brief A class to manage OpenGL shader program.
 *
 * This class allows to create and use shader programs by linking several shader objects. At least one shader object must be
 * provided in order to use the shader program. Multiple shader objects of the same type can be added but exactly one
 * of these shader objects must have a main() function. As in C, in order to use a function defined in a separate shader object
 * from another shader object, this function has to be declared with the same prototype in the source code of the last one.
 *
 * This class also allows to specify uniform and attribute variables values of the shader program.
 */
class TLP_GL_SCOPE GlShaderProgram {

public :

  /**
   * GlShaderProgram constructor
   *
   * \param name An optionnal name can be provided to identify the shader program
   */
  GlShaderProgram(const std::string &name = "");

  /**
   * GlShaderProgram destructor
   */
  ~GlShaderProgram();

  /**
   * A static function which returns true if vertex and fragment shaders are supported by the host graphic card
   */
  static bool shaderProgramsSupported();

  /**
   * A static function which returns true if geometry shaders are supported by the host graphic card
   */
  static bool geometryShaderSupported();

  /**
   * A static function which returns the current active shader if any
   */
  static GlShaderProgram *getCurrentActiveShader();

  /**
   * Return the string identifier of this shader program
   */
  std::string getName() const {
    return programName;
  }

  /**
   * Return the OpenGL identifier of this shader program
   */
  GLuint getShaderProgramId() const {
    return programObjectId;
  }

  /**
   * Add a shader object to this shader program
   *
   * \param shader the shader object to add to this shader program
   */
  void addShader(GlShader *shader);

  /**
   * Remove a shader object from this shader program
   * Note that the shader object will not be  destroyed
   *
   * \param shader the shader object to remove from this shader program
   */
  void removeShader(GlShader *shader);

  /**
   * remove all shaders from this shader program
   */
  void removeAllShaders();

  /**
   * Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a C string
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param shaderType the type of the shader object to add (must be Vertex or Fragment)
   * \param shaderSrc the C string containing the shader object source code
   */
  void addShaderFromSourceCode(const ShaderType shaderType, const char *shaderSrc);

  /**
   * Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a C++ string
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param shaderType the type of the shader object to add (must be Vertex or Fragment)
   * \param shaderSrc the C++ string containing the shader object source code
   */
  void addShaderFromSourceCode(const ShaderType shaderType, const std::string &shaderSrc);

  /**
   * Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a file
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param shaderType the type of the shader object to add (must be Vertex or Fragment)
   * \param shaderSrcFilename the aboslute path to the file containing the shader object source code
   */
  void addShaderFromSourceFile(const ShaderType shaderType, const std::string &shaderSrcFilename);

  /**
   * Convenient method to add a geometry shader object from a source code stored in a C string
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param geometryShaderSrc the C string containing the geometry shader object source code
   * \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
   *        (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
   *
   * \param outputPrimitiveType the type of graphics primitives the geometry shader will output
   *        (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
   */
  void addGeometryShaderFromSourceCode(const char *geometryShaderSrc, GLenum inputPrimitiveType, GLenum outputPrimitiveType);

  /**
   * Convenient method to add a geometry shader object from a source code stored in a C++ string
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param geometryShaderSrc the C++ string containing the geometry shader object source code
   * \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
   *        (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
   *
   * \param outputPrimitiveType the type of graphics primitives the geometry shader will output
   *        (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
   */
  void addGeometryShaderFromSourceCode(const std::string &geometryShaderSrc, GLenum inputPrimitiveType, GLenum outputPrimitiveType);

  /**
   * Convenient method to add a geometry shader object from a source code stored in a file
   * The created shader object will be automatically destroyed when removing all attached shader objects
   * or destroying the shader program
   *
   * \param geometryShaderSrcFilename the absolute path to the file containing the geometry shader object source code
   * \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
   *        (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
   *
   * \param outputPrimitiveType the type of graphics primitives the geometry shader will output
   *        (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
   */
  void addGeometryShaderFromSourceFile(const std::string &geometryShaderSrcFilename, GLenum inputPrimitiveType, GLenum outputPrimitiveType);

  /**
   * Link the shader program.
   */
  void link();

  /**
   * return true if the shader program has been successfully linked, false otherwise
   */
  bool isLinked() const {
    return programLinked;
  }

  /**
   * Print the info log containing errors and warnings related to shader objects compilation and shader program linkage
   */
  void printInfoLog();

  /**
   * Activate the shader program. If the shader program has not been linked, the link method will be called.
   */
  void activate();

  /**
   * Deactivate the shader program.
   */
  void desactivate();

  void setUniformFloat(const std::string &variateName, const float f);
  void setUniformVec2Float(const std::string &variableName, const Vector<float, 2> &vec2f);
  void setUniformVec2Float(const std::string &variableName, const float f1, const float f2);
  void setUniformVec3Float(const std::string &variableName, const Vector<float, 3> &vec3f);
  void setUniformVec3Float(const std::string &variableName, const float f1, const float f2, const float f3);
  void setUniformVec4Float(const std::string &variableName, const Vector<float, 4> &vec4f);
  void setUniformVec4Float(const std::string &variableName, const float f1, const float f2, const float f3, const float f4);
  void setUniformMat2Float(const std::string &variableName, const Matrix<float, 2> &mat2f, const bool transpose = false);
  void setUniformMat2Float(const std::string &variableName, const float *f, const bool transpose = false);
  void setUniformMat3Float(const std::string &variableName, const Matrix<float, 3> &mat3f, const bool transpose = false);
  void setUniformMat3Float(const std::string &variableName, const float *f, const bool transpose = false);
  void setUniformMat4Float(const std::string &variableName, const Matrix<float, 4> &mat4f, const bool transpose = false);
  void setUniformMat4Float(const std::string &variableName, const float *f, const bool transpose = false);

  void setUniformInt(const std::string &variableName, const int f);
  void setUniformVec2Int(const std::string &variableName, const Vector<int, 2> &vec2i);
  void setUniformVec2Int(const std::string &variableName, const int i1, const int i2);
  void setUniformVec3Int(const std::string &variableName, const Vector<int, 3> &vec3i);
  void setUniformVec3Int(const std::string &variableName, const int i1, const int i2, const int i3);
  void setUniformVec4Int(const std::string &variableName, const Vector<int, 4> &vec4i);
  void setUniformVec4Int(const std::string &variableName, const int i1, const int i2, const int i3, const int i4);

  void setUniformBool(const std::string &variableName, const bool b);
  void setUniformVec2Bool(const std::string &variableName, const Array<bool, 2> &vec2b);
  void setUniformVec2Bool(const std::string &variableName, const bool b1, const bool b2);
  void setUniformVec3Bool(const std::string &variableName, const Array<bool, 3> &vec3b);
  void setUniformVec3Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3);
  void setUniformVec4Bool(const std::string &variableName, const Array<bool, 4> &vec4b);
  void setUniformVec4Bool(const std::string &variableName, const bool i1, const bool i2, const bool i3, const bool i4);

  void setAttributeFloat(const std::string &variableName, const float f);
  void setAttributeVec2Float(const std::string &variableName, const Vector<float, 2> &vec2f);
  void setAttributeVec2Float(const std::string &variableName, const float f1, const float f2);
  void setAttributeVec3Float(const std::string &variableName, const Vector<float, 3> &vec3f);
  void setAttributeVec3Float(const std::string &variableName, const float f1, const float f2, const float f3);
  void setAttributeVec4Float(const std::string &variableName, const Vector<float, 4> &vec4f);
  void setAttributeVec4Float(const std::string &variableName, const float f1, const float f2, const float f3, const float f4);

  void setAttributeInt(const std::string &variableName, const int f);
  void setAttributeVec2Int(const std::string &variableName, const Vector<int, 2> &vec2i);
  void setAttributeVec2Int(const std::string &variableName, const int i1, const int i2);
  void setAttributeVec3Int(const std::string &variableName, const Vector<int, 3> &vec3i);
  void setAttributeVec3Int(const std::string &variableName, const int i1, const int i2, const int i3);
  void setAttributeVec4Int(const std::string &variableName, const Vector<int, 4> &vec4i);
  void setAttributeVec4Int(const std::string &variableName, const int i1, const int i2, const int i3, const int i4);

  void setAttributeBool(const std::string &variableName, const bool b);
  void setAttributeVec2Bool(const std::string &variableName, const Array<bool, 2> &vec2b);
  void setAttributeVec2Bool(const std::string &variableName, const bool b1, const bool b2);
  void setAttributeVec3Bool(const std::string &variableName, const Array<bool, 3> &vec3b);
  void setAttributeVec3Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3);
  void setAttributeVec4Bool(const std::string &variableName, const Array<bool, 4> &vec4b);
  void setAttributeVec4Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3, const bool b4);

  void setUniformTextureSampler(const std::string &samplerVariateName, const int samplerId);
  void setUniformColor(const std::string &variableName, const Color &color);
  void setAttributeColor(const std::string &variableName, const Color &color);

  template <unsigned int SIZE>
  void setUniformFloatArray(const std::string &variableName, const Vector<float, SIZE> &vecf);
  void setUniformFloatArray(const std::string &variableName, const unsigned int fCount, const float *f);

  template <unsigned int SIZE>
  void setUniformVec2FloatArray(const std::string &variableName, const Array<Vector<float, 2>, SIZE> &vecvec2f);
  void setUniformVec2FloatArray(const std::string &variableName, const unsigned int vec2fCount, const float *f);

  template <unsigned int SIZE>
  void setUniformVec3FloatArray(const std::string &variableName, const Array<Vector<float, 3>, SIZE> &vecvec3f);
  void setUniformVec3FloatArray(const std::string &variableName, const unsigned int vec3fCount, const float *f);

  template <unsigned int SIZE>
  void setUniformVec4FloatArray(const std::string &variableName, const Array<Vector<float, 4>, SIZE> &vecvec4f);
  void setUniformVec4FloatArray(const std::string &variableName, const unsigned int vec4fCount, const float *f);

  template <unsigned int SIZE>
  void setUniformMat2FloatArray(const std::string &variableName, const Vector<Matrix<float, 2>, SIZE> &vecmat2f, const bool transpose = false);
  void setUniformMat2FloatArray(const std::string &variableName, const unsigned int mat2fCount, const float *f, const bool transpose = false);

  template <unsigned int SIZE>
  void setUniformMat3FloatArray(const std::string &variableName, const Vector<Matrix<float, 3>, SIZE> &vecmat3f, const bool transpose = false);
  void setUniformMat3FloatArray(const std::string &variableName, const unsigned int mat3fCount, const float *f, const bool transpose = false);

  template <unsigned int SIZE>
  void setUniformMat4FloatArray(const std::string &variableName, const Vector<Matrix<float, 4>, SIZE> &vecmat4f, const bool transpose = false);
  void setUniformMat4FloatArray(const std::string &variableName, const unsigned int mat4fCount, const float *f, const bool transpose = false);

  template <unsigned int SIZE>
  void setUniformIntArray(const std::string &variableName, const Vector<int, SIZE> &veci);
  void setUniformIntArray(const std::string &variableName, const unsigned int iCount, const int *i);

  template <unsigned int SIZE>
  void setUniformVec2IntArray(const std::string &variableName, const Array<Vector<int, 2>, SIZE> &vecvec2i);
  void setUniformVec2IntArray(const std::string &variableName, const unsigned int vec2iCount, const int *i);

  template <unsigned int SIZE>
  void setUniformVec3IntArray(const std::string &variableName, const Array<Vector<int, 3>, SIZE> &vecvec3i);
  void setUniformVec3IntArray(const std::string &variableName, const unsigned int vec3iCount, const int *i);

  template <unsigned int SIZE>
  void setUniformVec4IntArray(const std::string &variableName, const Array<Vector<int, 4>, SIZE> &vecvec4i);
  void setUniformVec4IntArray(const std::string &variableName, const unsigned int vec4iCount, const int *i);

  template <unsigned int SIZE>
  void setUniformBoolArray(const std::string &variableName, const Array<bool, SIZE> &vecb);
  void setUniformBoolArray(const std::string &variableName, const unsigned int bCount, const bool *b);

  template <unsigned int SIZE>
  void setUniformVec2BoolArray(const std::string &variableName, const Array<Array<bool, 2>, SIZE> &vecvec2b);
  void setUniformVec2BoolArray(const std::string &variableName, const unsigned int vec2bCount, const bool *b);

  template <unsigned int SIZE>
  void setUniformVec3BoolArray(const std::string &variableName, const Array<Array<bool, 3>, SIZE> &vecvec3b);
  void setUniformVec3BoolArray(const std::string &variableName, const unsigned int vec3bCount, const bool *b);

  template <unsigned int SIZE>
  void setUniformVec4BoolArray(const std::string &variableName, const Array<Array<bool, 4>, SIZE> &vecvec4b);
  void setUniformVec4BoolArray(const std::string &variableName, const unsigned int vec4bCount, const bool *b);

  void getUniformFloatVariableValue(const std::string &variableName, float *value);
  void getUniformIntVariableValue(const std::string &variableName, int *value);
  void getUniformBoolVariableValue(const std::string &variableName, bool *value);
  void getUniformVec2BoolVariableValue(const std::string &variableName, bool *value);
  void getUniformVec3BoolVariableValue(const std::string &variableName, bool *value);
  void getUniformVec4BoolVariableValue(const std::string &variableName, bool *value);

  // This method must be called before calling the link method to
  // set the max number of vertices a geometry shader can output
  // If not called, the maximum value is set when linking the shader program (not recommended for performance).
  void setMaxGeometryShaderOutputVertices(const int maxOutputVertices);

private :

  GLint getUniformVariableLocation(const std::string &variableName);
  GLint getAttributeVariableLocation(const std::string &variableName);

  std::string programName;
  GLuint programObjectId;

  std::string programLinkLog;
  bool programLinked;

  std::vector<GlShader *> attachedShaders;
  int maxGeometryShaderOutputVertices;

  static GlShaderProgram *currentActiveShaderProgram;



};

}

#endif // GL_SHADER_PROGRAM
///@endcond