This file is indexed.

/usr/include/ucommon/generics.h is in libucommon-dev 6.0.7-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// Copyright (C) 2006-2010 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Generic templates for C++.  These are templates that do not depend
 * on any ucommon classes.  They can be used for generic C++ programming.
 * @file ucommon/generics.h
 */

#ifndef _UCOMMON_GENERICS_H_
#define _UCOMMON_GENERICS_H_

#ifndef _UCOMMON_CPR_H_
#include <ucommon/cpr.h>
#endif

#include <stdlib.h>
#include <string.h>

#ifdef  NEW_STDLIB
#include <stdexcept>
#endif

#if defined(NEW_STDLIB) || defined(OLD_STDLIB)
#define THROW(x)    throw x
#define THROWS(x)   throw(x)
#define THROWS_ANY  throw()
#else
#define THROW(x)    ::abort()
#define THROWS(x)
#define THROWS_ANY
#endif

NAMESPACE_UCOMMON

/**
 * Generic smart pointer class.  This is the original Common C++ "Pointer"
 * class with a few additions.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class pointer
{
protected:
    unsigned *counter;
    T *object;

public:
    inline void release(void) {
        if(counter && --(*counter)==0) {
            delete counter;
            delete object;
        }
        object = NULL;
        counter = NULL;
    }

    inline void retain(void) {
        if(counter)
            ++*counter;
    }

    inline void set(T* ptr) {
        if(object != ptr) {
            release();
            counter = new unsigned;
            *counter = 1;
            object = ptr;
        }
    }

    inline void set(const pointer<T> &ref) {
        if(object == ref.object)
            return;

        if(counter && --(*counter)==0) {
            delete counter;
            delete object;
        }
        object = ref.object;
        counter = ref.counter;
        if(counter)
            ++(*counter);
    }

    inline pointer() {
        counter = NULL;
        object = NULL;
    }

    inline explicit pointer(T* ptr = NULL) : object(ptr) {
        if(object) {
            counter = new unsigned;
            *counter = 1;
        }
        else
            counter = NULL;
    }

    inline pointer(const pointer<T> &ref) {
        object = ref.object;
        counter = ref.counter;
        if(counter)
            ++(*counter);
    }

    inline pointer& operator=(const pointer<T> &ref) {
        this->set(ref);
        return *this;
    }

    inline pointer& operator=(T *ptr) {
        this->set(ptr);
        return *this;
    }

    inline ~pointer()
        {release();}

    inline T& operator*() const
        {return *object;};

    inline T* operator->() const
        {return object;};

    inline bool operator!() const
        {return (counter == NULL);};

    inline operator bool() const
        {return counter != NULL;};
};

/**
 * Generic smart array class.  This is the original Common C++ "Pointer" class
 * with a few additions for arrays.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class array_pointer
{
protected:
    unsigned *counter;
    T *array;

public:
    inline void release(void) {
        if(counter && --(*counter)==0) {
            delete counter;
            delete[] array;
        }
        array = NULL;
        counter = NULL;
    }

    inline void retain(void) {
        if(counter)
            ++*counter;
    }

    inline void set(T* ptr) {
        if(array != ptr) {
            release();
            counter = new unsigned;
            *counter = 1;
            array = ptr;
        }
    }

    inline void set(const array_pointer<T> &ref) {
        if(array == ref.array)
            return;

        if(counter && --(*counter)==0) {
            delete counter;
            delete[] array;
        }
        array = ref.array;
        counter = ref.counter;
        if(counter)
            ++(*counter);
    }

    inline array_pointer() {
        counter = NULL;
        array = NULL;
    }

    inline explicit array_pointer(T* ptr = NULL) : array(ptr) {
        if(array) {
            counter = new unsigned;
            *counter = 1;
        }
        else
            counter = NULL;
    }

    inline array_pointer(const array_pointer<T> &ref) {
        array = ref.array;
        counter = ref.counter;
        if(counter)
            ++(*counter);
    }

    inline array_pointer& operator=(const array_pointer<T> &ref) {
        this->set(ref);
        return *this;
    }

    inline array_pointer& operator=(T *ptr) {
        this->set(ptr);
        return *this;
    }

    inline ~array_pointer()
        {release();}

    inline T* operator*() const
        {return array;};

    inline T& operator[](size_t offset) const
        {return array[offset];};

    inline T* operator()(size_t offset) const
        {return &array[offset];};

    inline bool operator!() const
        {return (counter == NULL);};

    inline operator bool() const
        {return counter != NULL;};
};

/**
 * Manage temporary object stored on the heap.  This is used to create a
 * object on the heap who's scope is controlled by the scope of a member
 * function call.  Sometimes we have data types and structures which cannot
 * themselves appear as auto variables.  We may also have a limited stack
 * frame size in a thread context, and yet have a dynamic object that we
 * only want to exist during the life of the method call.  Using temporary
 * allows any type to be created from the heap but have a lifespan of a
 * method's stack frame.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class temporary
{
protected:
    T *object;
public:
    /**
     * Construct a temporary object, create our stack frame reference.
     */
    inline temporary()
        {object = NULL;};

    /**
     * Disable copy constructor.
     */
    temporary(const temporary<T>&)
        {::abort();};

    /**
     * Construct an assigned pointer.
     */
    inline temporary(T *ptr)
        {object = ptr;};

    /**
     * Assign a temporary object.  This adds a pointer to an existing
     * type to the current temporary pointer.  If the temporary was
     * already assigned, then it is deleted.
     * @param temp object to assign.
     */
    inline T& operator=(T *temp) {
        if(object)
            delete object;
        object = temp;
        return *this;
    }

    /**
     * Assign a temporary object.  This adds a pointer to an existing
     * type to the current temporary pointer.  If the temporary was
     * already assigned, then it is deleted.
     * @param temp object to assign.
     */
    inline void set(T *temp) {
        if(object)
            delete object;
        object = temp;
    }

    /**
     * Access heap object through our temporary directly.
     * @return reference to heap resident object.
     */
    inline T& operator*() const
        {return *object;};

    /**
     * Access members of our heap object through our temporary.
     * @return member reference of heap object.
     */
    inline T* operator->() const
        {return object;};

    inline operator bool() const
        {return object != NULL;};

    inline bool operator!() const
        {return object == NULL;};

    inline ~temporary() {
        if(object)
            delete object;
        object = NULL;
    }
};

/**
 * Manage temporary array stored on the heap.   This is used to create an
 * array on the heap who's scope is controlled by the scope of a member
 * function call.  Sometimes we have data types and structures which cannot
 * themselves appear as auto variables.  We may also have a limited stack
 * frame size in a thread context, and yet have a dynamic object that we
 * only want to exist during the life of the method call.  Using temporary
 * allows any type to be created from the heap but have a lifespan of a
 * method's stack frame.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class temp_array
{
protected:
    T *array;
    size_t size;

public:
    /**
     * Construct a temporary object, create our stack frame reference.
     */
    inline temp_array(size_t s)
        {array =  new T[s]; size = s;};

    /**
     * Construct a temporary object with a copy of some initial value.
     * @param initial object value to use.
     */
    inline temp_array(const T& initial, size_t s) {
        array = new T[s];
        size = s;
        for(size_t p = 0; p < s; ++p)
            array[p] = initial;
    }

    inline void reset(size_t s)
        {delete[] array; array = new T[s]; size = s;};

    inline void reset(const T& initial, size_t s) {
        if(array)
            delete[] array;
        array = new T[s];
        size = s;
        for(size_t p = 0; p < s; ++p)
            array[p] = initial;
    }

    inline void set(const T& initial) {
        for(size_t p = 0; p < size; ++p)
            array[p] = initial;
    }

    /**
     * Disable copy constructor.
     */
    temp_array(const temp_array<T>&)
        {::abort();};

    inline operator bool() const
        {return array != NULL;};

    inline bool operator!() const
        {return array == NULL;};

    inline ~temp_array() {
        if(array)
            delete[] array;
        array = NULL;
        size = 0;
    }

    inline T& operator[](size_t offset) const {
        crit(offset < size, "array out of bound");
        return array[offset];
    }

    inline T* operator()(size_t offset) const {
        crit(offset < size, "array out of bound");
        return &array[offset];
    }
};

/**
 * Save and restore global objects in function call stack frames.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<typename T>
class save_restore
{
private:
    T *original;
    T temp;

public:
    /**
     * Save object into local copy and keep reference to the original object.
     * @param object to save.
     */
    inline save_restore(T& object)
        {original = &object; temp = object;};

    /**
     * Restore original when stack frame is released.
     */
    inline ~save_restore()
        {*original = temp;};
};

/**
 * Convenience function to validate object assuming it is castable to bool.
 * @param object we are testing.
 * @return true if object valid.
 */
template<class T>
inline bool is(T& object)
    {return object.operator bool();}

/**
 * Convenience function to test pointer object.  This solves issues where
 * some compilers get confused between bool and pointer operators.
 * @param object we are testing.
 * @return true if object points to NULL.
 */
template<typename T>
inline bool isnull(T& object)
    {return (bool)(object.operator*() == NULL);}

/**
 * Convenience function to test pointer-pointer object.  This solves issues
 * where some compilers get confused between bool and pointer operators.
 * @param object we are testing.
 * @return true if object points to NULL.
 */
template<typename T>
inline bool isnullp(T *object)
    {return (bool)(object->operator*() == NULL);}

/**
 * Convenience function to duplicate object pointer to heap.
 * @param object we are duping.
 * @return heap pointer instance.
 */
template<typename T>
inline T* dup(const T& object)
    {return new T(object);}

template<typename T>
inline void dupfree(T object)
    {delete object;}

template<>
inline char *dup<char>(const char& object)
    {return strdup(&object);}

template<>
inline void dupfree<char*>(char* object)
    {::free(object);}

/**
 * Convenience function to reset an existing object.
 * @param object type to reset.
 */
template<typename T>
inline void reset_unsafe(T& object)
    {new((caddr_t)&object) T;}

/**
 * Convenience function to zero an object and restore type info.
 * @param object to zero in memory.
 */
template<typename T>
inline void zero_unsafe(T& object)
    {memset((void *)&object, 0, sizeof(T)); new((caddr_t)&object) T;}

/**
 * Convenience function to copy class.
 * @param target to copy into.
 * @param source to copy from.
 */
template<typename T>
inline void copy_unsafe(T* target, const T* source)
    {memcpy((void *)target, (void *)source, sizeof(T));}

/**
 * Convenience function to store object pointer into object.
 * @param target to copy into.
 * @param source to copy from.
 */
template<typename T>
inline void store_unsafe(T& target, const T* source)
    {memcpy((void *)&target, (void *)source, sizeof(T));}

/**
 * Convenience function to swap objects.
 * @param o1 to swap.
 * @param o2 to swap.
 */
template<typename T>
inline void swap(T& o1, T& o2)
    {cpr_memswap(&o1, &o2, sizeof(T));}

/**
 * Convenience function to return max of two objects.
 * @param o1 to check.
 * @param o2 to check.
 * @return max object.
 */
template<typename T>
inline T& (max)(T& o1, T& o2)
{
    return o1 > o2 ? o1 : o2;
}

/**
 * Convenience function to return min of two objects.
 * @param o1 to check.
 * @param o2 to check.
 * @return min object.
 */
template<typename T>
inline T& (min)(T& o1, T& o2)
{
    return o1 < o2 ? o1 : o2;
}

/**
 * Convenience macro to range restrict values.
 * @param value to check.
 * @param low value.
 * @param high value.
 * @return adjusted value.
 */
template<typename T>
inline T& (limit)(T& value, T& low, T& high)
{
    return (value < low) ? low : ((value > high) ? high : value);
}

END_NAMESPACE

#endif