This file is indexed.

/usr/include/ucommon/memory.h is in libucommon-dev 6.0.7-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
// Copyright (C) 2006-2010 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Private heaps, pools, and associations.
 * Private heaps often can reduce locking contention in threaded applications
 * since they do not require using the global "malloc" function.  Private
 * heaps also can be used as auto-release heaps, where all memory allocated
 * and handled out for small objects can be automatically released all at once.
 * Pager pools are used to optimize system allocation around page boundaries.
 * Associations allow private memory to be tagged and found by string
 * identifiers.
 * @file ucommon/memory.h
 */

#ifndef _UCOMMON_MEMORY_H_
#define _UCOMMON_MEMORY_H_

#ifndef _UCOMMON_CONFIG_H_
#include <ucommon/platform.h>
#endif

#ifndef _UCOMMON_PROTOCOLS_H_
#include <ucommon/protocols.h>
#endif

#ifndef  _UCOMMON_LINKED_H_
#include <ucommon/linked.h>
#endif

#ifndef _UCOMMON_STRING_H_
#include <ucommon/string.h>
#endif

NAMESPACE_UCOMMON

class PagerPool;

/**
 * A memory protocol pager for private heap manager.  This is used to allocate
 * in an optimized manner, as it assumes no mutex locks are held or used as
 * part of it's own internal processing.  It also is designed for optimized
 * performance.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT memalloc : public MemoryProtocol
{
private:
    friend class bufpager;

    size_t pagesize, align;
    unsigned count;

    typedef struct mempage {
        struct mempage *next;
        union {
            void *memalign;
            unsigned used;
        };
    }   page_t;

    page_t *page;

protected:
    unsigned limit;

    /**
     * Acquire a new page from the heap.  This is mostly used internally.
     * @return page structure of the newly acquired memory page.
     */
    page_t *pager(void);

    /**
     * Report runtime memory exhaustion.
     */
    virtual void fault(void) const;

public:
    /**
     * Construct a memory pager.
     * @param page size to use or 0 for OS allocation size.
     */
    memalloc(size_t page = 0);

    /**
     * Destroy a memory pager.  Release all pages back to the heap at once.
     */
    virtual ~memalloc();

    /**
     * Get the number of pages that have been allocated from the real heap.
     * @return pages allocated from heap.
     */
    inline unsigned pages(void) const
        {return count;}

    /**
     * Get the maximum number of pages that are permitted.  One can use a
     * derived class to set and enforce a maximum limit to the number of
     * pages that will be allocated from the real heap.  This is often used
     * to detect and bring down apps that are leaking.
     * @return page allocation limit.
     */
    inline unsigned max(void) const
        {return limit;}

    /**
     * Get the size of a memory page.
     * @return size of each pager heap allocation.
     */
    inline unsigned size(void) const
        {return pagesize;}

    /**
     * Determine fragmentation level of acquired heap pages.  This is
     * represented as an average % utilization (0-100) and represents the
     * used portion of each allocated heap page verse the page size.  Since
     * requests that cannot fit on an already allocated page are moved into
     * a new page, there is some unusable space left over at the end of the
     * page.  When utilization approaches 100, this is good.  A low utilization
     * may suggest a larger page size should be used.
     * @return pager utilization.
     */
    unsigned utilization(void) const;

    /**
     * Purge all allocated memory and heap pages immediately.
     */
    void purge(void);

    /**
     * Allocate memory from the pager heap.  The size of the request must be
     * less than the size of the memory page used.  This implements the
     * memory protocol allocation method.
     * @param size of memory request.
     * @return allocated memory or NULL if not possible.
     */
    virtual void *_alloc(size_t size);
};

/**
 * A managed private heap for small allocations.  This is used to allocate
 * a large number of small objects from a paged heap as needed and to then
 * release them together all at once.  This pattern has significantly less
 * overhead than using malloc and offers less locking contention since the
 * memory pager can also have it's own mutex.  Pager pool allocated memory
 * is always aligned to the optimal data size for the cpu bus and pages are
 * themselves created from memory aligned allocations.  A page size for a
 * memory pager should be some multiple of the OS paging size.
 *
 * The mempager uses a strategy of allocating fixed size pages as needed
 * from the real heap and allocating objects from these pages as needed.
 * A new page is allocated from the real heap when there is insufficient
 * space in the existing page to complete a request.  The largest single
 * memory allocation one can make is restricted by the page size used, and
 * it is best to allocate objects a significant fraction smaller than the
 * page size, as fragmentation occurs at the end of pages when there is
 * insufficient space in the current page to complete a request.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT mempager : public memalloc, public LockingProtocol
{
private:
    pthread_mutex_t mutex;

protected:
    /**
     * Lock the memory pager mutex.  It will be more efficient to lock
     * the pager and then call the locked allocator than using alloc which
     * separately locks and unlocks for each request when a large number of
     * allocation requests are being batched together.
     */
    virtual void _lock(void);

    /**
     * Unlock the memory pager mutex.
     */
    virtual void _unlock(void);

public:
    /**
     * Construct a memory pager.
     * @param page size to use or 0 for OS allocation size.
     */
    mempager(size_t page = 0);

    /**
     * Destroy a memory pager.  Release all pages back to the heap at once.
     */
    virtual ~mempager();

    /**
     * Determine fragmentation level of acquired heap pages.  This is
     * represented as an average % utilization (0-100) and represents the
     * used portion of each allocated heap page verse the page size.  Since
     * requests that cannot fit on an already allocated page are moved into
     * a new page, there is some unusable space left over at the end of the
     * page.  When utilization approaches 100, this is good.  A low utilization
     * may suggest a larger page size should be used.
     * @return pager utilization.
     */
    unsigned utilization(void);

    /**
     * Purge all allocated memory and heap pages immediately.
     */
    void purge(void);

    /**
     * Return memory back to pager heap.  This actually does nothing, but
     * might be used in a derived class to create a memory heap that can
     * also receive (free) memory allocated from our heap and reuse it,
     * for example in a full private malloc implementation in a derived class.
     * @param memory to free back to private heap.
     */
    virtual void dealloc(void *memory);

    /**
     * Allocate memory from the pager heap.  The size of the request must be
     * less than the size of the memory page used.  This impliments the
     * memory protocol with mutex locking for thread safety.
     * is locked during this operation and then released.
     * @param size of memory request.
     * @return allocated memory or NULL if not possible.
     */
    virtual void *_alloc(size_t size);
};

class __EXPORT ObjectPager : protected memalloc
{
public:
    class __EXPORT member : public LinkedObject
    {
    private:
        void *mem;

    protected:
        friend class ObjectPager;

        inline void set(member *node)
            {Next = node;};

        inline void *get(void) const
            {return mem;};

        member(LinkedObject **root);
        member();

    public:
        inline void *operator*() const
            {return mem;};
    };

private:
    unsigned members;
    LinkedObject *root;
    size_t typesize;
    member *last;
    void **index;

protected:
    ObjectPager(size_t objsize, size_t pagesize = 256);

    /**
     * Get object from list.  This is useful when objectpager is
     * passed as a pointer and hence inconvenient for the [] operator.
     * @param item to access.
     * @return pointer to text for item, or NULL if out of range.
     */
    void *get(unsigned item) const;

    /**
     * Add object to list.
     * @param object to add.
     */
    void *add(void);

    void *push(void);

    /**
     * Remove element from front of list.  Does not release memory.
     * @return object removed.
     */
    void *pull(void);

    /**
     * Remove element from back of list.  Does not release memory.
     * @return object removed.
     */
    void *pop(void);

    /**
     * Invalid object...
     * @return typically NULL.
     */
    void *invalid(void) const;

public:
    /**
     * Purge all members and release pager member.  The list can then
     * be added to again.
     */
    void clear(void);

    /**
     * Get root of pager list.  This is useful for externally enumerating
     * the list of strings.
     * @return first member of list or NULL if empty.
     */
    inline ObjectPager::member *begin(void)
        {return static_cast<ObjectPager::member *>(root);};

    inline operator bool() const
        {return members > 0;}

    inline bool operator!() const
        {return !members;}

    /**
     * Get the number of items in the pager string list.
     * @return number of items stored.
     */
    inline unsigned count(void) const
        {return members;};

    /**
     * Convenience typedef for iterative pointer.
     */
    typedef linked_pointer<ObjectPager::member> iterator;

    inline size_t size(void)
        {return memalloc::size();}

    inline unsigned pages(void)
        {return memalloc::pages();}

protected:
    /**
     * Gather index list.
     * @return index.
     */
    void **list(void);
};

/**
 * String pager for storing lists of NULL terminated strings.  This is
 * used for accumulating lists which can be destroyed all at once.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT StringPager : protected memalloc
{
private:
    unsigned members;
    LinkedObject *root;

protected:
    virtual const char *invalid(void) const;

public:
    /**
     * Filter text in a derived class.  The base class filter removes
     * newlines at end of text and filters out empty strings.
     * @param text to filter.
     * @param size of text buffer for transforms.
     * @return false if end of data.
     */
    virtual bool filter(char *text, size_t size);

    /**
     * Member of string list.  This is exposed so that the list of strings
     * can be externally enumerated with linked_pointer<StringPager::member>
     * if so desired, through the begin() method.
     * @author David Sugar <dyfet@gnutelephony.org>
     */
    class __EXPORT member : public LinkedObject
    {
    private:
        const char *text;

    protected:
        friend class StringPager;

        inline void set(member *node)
            {Next = node;};

        member(LinkedObject **root, const char *data);
        member(const char *data);

    public:
        inline const char *operator*() const
            {return text;};

        inline const char *get(void) const
            {return text;};
    };

    /**
     * Create a pager with a maximum page size.
     * @param size of pager allocation pages.
     */
    StringPager(size_t pagesize = 256);

    StringPager(char **list, size_t pagesize = 256);

    /**
     * Get the number of items in the pager string list.
     * @return number of items stored.
     */
    inline unsigned count(void) const
        {return members;};

    /**
     * Get string item from list.  This is useful when StringPager is
     * passed as a pointer and hence inconvenient for the [] operator.
     * @param item to access.
     * @return pointer to text for item, or NULL if out of range.
     */
    const char *get(unsigned item) const;

    /**
     * Replace string item in list.
     * @param item to replace.
     * @param string to replace with.
     */
    void set(unsigned item, const char *string);

    /**
     * Add text to list.
     * @param text to add.
     */
    void add(const char *text);

    /**
     * Add text to front of list.
     * @param text to add.
     */
    void push(const char *text);

    /**
     * Add text list to front of list.
     * @param text to add.
     */
    void push(char **text);

    /**
     * Remove element from front of list.  Does not release memory.
     * @return text removed.
     */
    const char *pull(void);

    /**
     * Remove element from back of list.  Does not release memory.
     * @return text removed.
     */
    const char *pop(void);

    /**
     * Add list to list.  This is a list of string pointers terminated with
     * NULL.
     * @param list of text to add.
     */
    void add(char **list);

    /**
     * Set list to list.  This is a list of string pointers terminated with
     * NULL.
     * @param list of text to set.
     */
    void set(char **list);

    /**
     * Purge all members and release pager member.  The list can then
     * be added to again.
     */
    void clear(void);

    /**
     * Return specified member from pager list.  This is a convenience
     * operator.
     * @param item to access.
     * @return text of item or NULL if invalid.
     */
    inline const char *operator[](unsigned item) const
        {return get(item);};

    inline const char *at(unsigned item) const
        {return get(item);};

    /**
     * Get root of pager list.  This is useful for externally enumerating
     * the list of strings.
     * @return first member of list or NULL if empty.
     */
    inline StringPager::member *begin(void) const
        {return static_cast<StringPager::member *>(root);};

    /**
     * Convenience operator to add to pager and auto-sort.
     * @param text to add to list.
     */
    inline void operator+=(const char *text)
        {add(text);};

    /**
     * Convenience operator to add to pager.
     * @param text to add to list.
     */
    inline StringPager& operator<<(const char *text)
        {add(text); return *this;}

    inline StringPager& operator>>(const char *text)
        {push(text); return *this;}

    /**
     * Sort members.
     */
    void sort(void);

    /**
     * Gather index list.
     * @return index.
     */
    char **list(void);

    /**
     * Tokenize a string and add each token to the StringPager.
     * @param text to tokenize.
     * @param list of characters to use as token separators.
     * @param quote pairs of characters for quoted text or NULL if not used.
     * @param end of line marker characters or NULL if not used.
     * @return number of tokens parsed.
     */
    unsigned token(const char *text, const char *list, const char *quote = NULL, const char *end = NULL);

    unsigned split(const char *text, const char *string, unsigned flags = 0);

    unsigned split(stringex_t& expr, const char *string, unsigned flags = 0);

    String join(const char *prefix = NULL, const char *middle = NULL, const char *suffix = NULL);

    inline operator bool()
        {return members > 0;}

    inline bool operator!()
        {return !members;}

    inline StringPager& operator=(char **list)
        {set(list); return *this;}

    inline const char *operator*()
        {return pull();}

    inline operator char **()
        {return list();};

    /**
     * Convenience typedef for iterative pointer.
     */
    typedef linked_pointer<StringPager::member> iterator;

    inline size_t size(void)
        {return memalloc::size();}

    inline unsigned pages(void)
        {return memalloc::pages();}

private:
    member *last;
    char **index;
};

/**
 * Directory pager is a paged string list for directory file names.
 * This protocol is used to convert a directory into a list of filenames.
 * As a protocol it offers a filtering method to select which files to
 * include in the list.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT DirPager : protected StringPager
{
protected:
    const char *dir;

    /**
     * Filter filenames in a derived class.  The default filter
     * drops "." special files.
     * @param filename to filter.
     * @param size of filename buffer.
     * @return true if include in final list.
     */
    virtual bool filter(char *filename, size_t size);

    /**
     * Load a directory path.
     * @param path to load.
     * @return true if valid.
     */
    bool load(const char *path);

public:
    DirPager();

    DirPager(const char *path);

    void operator=(const char *path);

    inline const char *operator*() const
        {return dir;};

    inline operator bool() const
        {return dir != NULL;};

    inline bool operator!() const
        {return dir == NULL;};

    inline unsigned count(void) const
        {return StringPager::count();};

    /**
     * Return specified filename from directory list.  This is a convenience
     * operator.
     * @param item to access.
     * @return text of item or NULL if invalid.
     */
    inline const char *operator[](unsigned item) const
        {return StringPager::get(item);};

    inline const char *get(unsigned item) const
        {return StringPager::get(item);};

    inline const char *at(unsigned item) const
        {return StringPager::get(item);};

    inline size_t size(void)
        {return memalloc::size();}

    inline unsigned pages(void)
        {return memalloc::pages();}
};

/**
 * Buffered pager for storing paged strings for character protocol.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT bufpager : public memalloc, public CharacterProtocol
{
private:
    typedef struct cpage {
        struct cpage *next;
        char *text;
        unsigned size, used;
    } cpage_t;

    cpage_t *first, *last, *current, *freelist;
    unsigned cpos;
    unsigned long ccount;
    bool eom;       /* null written or out of memory */

    virtual int _getch(void);
    virtual int _putch(int code);

protected:
    virtual void *_alloc(size_t size);

public:
    /**
     * Reset pager text buffer protocol.
     */
    void reset(void);

    /**
     * Rewind to start of text buffer protocol.
     */
    void rewind(void);

    /**
     * Create an output string from buffer.
     * @return output string allocated.
     */
    char *dup(void);

    /**
     * Set text of string buffer.
     * @param text to set.
     */
    void set(const char *text);

    /**
     * Add text to string buffer.
     * @param text to add.
     */
    void add(const char *text);

    /**
     * Get string from buffer.
     * @param text to save into.
     * @param size of buffer.
     * @return count of characters copied.
     */
    size_t get(char *text, size_t size);

    /**
     * Put memory string into buffer including NULL byte.
     * @param text to add.
     * @param size of text to add.
     */
    void put(const char *text, size_t size);

    /**
     * Get total size.
     * @return number of characters in buffer.
     */
    inline unsigned long used(void) const
        {return ccount;}

    /**
     * Convenience operator to get text.
     * @return text string of buffer.
     */
    inline char *operator *()
        {return dup();}

    /**
     * Convenience operator to add to pager.
     * @param text to add to list.
     */
    inline bufpager& operator<<(const char *text)
        {add(text); return *this;};

    bufpager(size_t page = 0);

    /**
     * Request character buffer to write into directly.
     * @param iosize made available.
     * @return pointer to buffer or NULL if out of memory.
     */
    char *request(size_t *iosize);

    /**
     * Get pointer to copy character data.  The memory pointer is
     * positioned at the next chunk automatically.
     * @param iosize of data you can copy.
     * @return to data from buffer or NULL if past end.
     */
    char *copy(size_t *iosize);

    /**
     * Used to complete a request method.
     * @param size of data actually written.
     */
    void update(size_t size);

    /**
     * Check if can still save into buffer.
     * @return true if buffer is full.
     */
    inline bool operator!()
        {return eom;}

    /**
     * Check if can still save into buffer.  Used for is() function.
     * @return true if pager can still store more.
     */
    inline operator bool()
        {return !eom;}
};

/**
 * Create a linked list of auto-releasable objects.  LinkedObject derived
 * objects can be created that are assigned to an autorelease object list.
 * When the autorelease object falls out of scope, all the objects listed'
 * with it are automatically deleted.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT autorelease
{
private:
    LinkedObject *pool;

public:
    /**
     * Create an initially empty autorelease pool.
     */
    autorelease();

    /**
     * Destroy an autorelease pool and delete member objects.
     */
    ~autorelease();

    /**
     * Destroy an autorelease pool and delete member objects.  This may be
     * used to release an existing pool programmatically when desired rather
     * than requiring the object to fall out of scope.
     */
    void release(void);

    /**
     * Add a linked object to the autorelease pool.
     * @param object to add to pool.
     */
    void operator+=(LinkedObject *object);
};

/**
 * This is a base class for objects that may be created in pager pools.
 * This is also used to create objects which can be maintained as managed
 * memory and returned to a pool.  The linked list is used when freeing
 * and re-allocating the object.  These objects are reference counted
 * so that they are returned to the pool they come from automatically
 * when falling out of scope.  This can be used to create automatic
 * garbage collection pools.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT PagerObject : public LinkedObject, public CountedObject
{
protected:
    friend class PagerPool;

    PagerPool *pager;

    /**
     * Create a pager object.  This is object is constructed by a PagerPool.
     */
    PagerObject();

    /**
     * Reset state of object.
     */
    void reset(void);

    /**
     * Release a pager object reference.
     */
    void release(void);

    /**
     * Return the pager object back to it's originating pool.
     */
    void dealloc(void);
};

/**
 * Pager pool base class for managed memory pools.  This is a helper base
 * class for the pager template and generally is not used by itself.  If
 * different type pools are intended to use a common memory pager then
 * you will need to mixin a memory protocol object that performs
 * redirection such as the MemoryRedirect class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT PagerPool : public MemoryProtocol
{
private:
    LinkedObject *freelist;
    pthread_mutex_t mutex;

protected:
    PagerPool();
    virtual ~PagerPool();

    PagerObject *get(size_t size);

public:
    /**
     * Return a pager object back to our free list.
     * @param object to return to pool.
     */
    void put(PagerObject *object);
};

class __EXPORT charmem : public CharacterProtocol
{
protected:
    char *buffer;
    size_t inp, out, size;
    bool dynamic;

    int _getch(void);
    int _putch(int code);

public:
    charmem(char *mem, size_t size);
    charmem(size_t size);
    charmem();
    virtual ~charmem();

    void release(void);

    void set(char *mem, size_t size);

    void set(size_t size);

    inline void reset(void)
        {inp = out = 0;}

    inline void rewind(void)
        {inp = 0;}
};

class __EXPORT chartext : public CharacterProtocol
{
private:
    char *pos;
    size_t max;

    int _putch(int code);
    int _getch(void);

public:
    chartext();
    chartext(char *buf);
    chartext(char *buf, size_t size);
    virtual ~chartext();
};

/**
 * A class to hold memory pointers referenced by string names.  This is
 * used to form a typeless data pointer that can be associated and
 * referenced by string/logical name.  The memory used for forming
 * the string names can itself be managed in reusable memory pools and
 * the entire structure uses it's own private pager heap.  This allows
 * new string named pointers to be added and deleted at runtime in a thread-
 * safe manner.  This might typically be used as a session id manager or for
 * symbol tables.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT keyassoc : protected mempager
{
private:
    /**
     * Internal paged memory residing data class for name associated pointers.
     */
    class __LOCAL keydata : public NamedObject
    {
    public:
        void *data;
        char text[8];

        keydata(keyassoc *assoc, const char *id, unsigned max, unsigned bufsize);
    };

    friend class keydata;

    unsigned keycount;
    unsigned paths;
    size_t keysize;
    NamedObject **root;
    LinkedObject **list;

protected:
    /**
     * Allocate object stored in pager also.
     * @param name of object entry.
     * @param size of object to allocate.
     * @return pointer to allocated object or NULL on failure.
     */
    void *allocate(const char *name, size_t size);

public:
    /**
     * Create a key associated memory pointer table.
     * @param indexing size for hash map.
     * @param max size of a string name if names are in reusable managed memory.
     * @param page size of memory pager.
     */
    keyassoc(unsigned indexing = 177, size_t max = 0, size_t page = 0);

    /**
     * Destroy association object.  Release all pages back to the heap.
     */
    ~keyassoc();

    /**
     * Get the number of associations we have in our object.
     * @return number of associations stored.
     */
    inline unsigned count(void) const
        {return keycount;};

    /**
     * Lookup the data pointer of a string by direct operation.
     * @param name to lookup.
     * @return pointer to data or NULL if not found.
     */
    inline void *operator()(const char *name)
        {return locate(name);};

    /**
     * Purge all associations and return allocated pages to heap.
     */
    void purge(void);

    /**
     * Lookup the data pointer by the string name given.
     * @param name to lookup.
     * @return pointer to data or NULL if not found.
     */
    void *locate(const char *name);

    /**
     * Assign a name to a data pointer.  If the name exists, it is re-assigned
     * with the new pointer value, otherwise it is created.
     * @param name to assign.
     * @param pointer value to assign with name.
     * @return false if failed because name is too long for managed table.
     */
    bool assign(const char *name, void *pointer);

    /**
     * Create a new name in the association table and assign it's value.
     * @param name to create.
     * @param pointer value to assign with name.
     * @return false if already exists or name is too long for managed table.
     */
    bool create(const char *name, void *pointer);

    /**
     * Remove a name and pointer association.  If managed key names are used
     * then the memory allocated for the name will be re-used.
     * @param name to remove.
     * @return pointer value of the name or NULL if not found.
     */
    void *remove(const char *name);
};

template <class T, size_t P = 0>
class listof : private ObjectPager
{
public:
    inline listof() : ObjectPager(sizeof(T), P) {};

    inline T& operator[](unsigned item) const
        {return (T&)ObjectPager::get(item);}

    inline T* operator()(unsigned item) const
        {return (T*)ObjectPager::get(item);}

    inline const T& at(unsigned item) const
        {return (const T&)ObjectPager::get(item);}

    inline T* pull(void)
        {return (T*)ObjectPager::pull();}

    inline T* pop(void)
        {return (T*)ObjectPager::pop();}

    inline operator T**()
        {return (T**)ObjectPager::list();}

    inline T** list(void)
        {return (T**)ObjectPager::list();}

    inline T* operator++(void)
        {T* tmp = ObjectPager::add(); if(tmp) new((caddr_t)tmp) T; return tmp;}

    inline T* add(const T& object)
        {T* tmp = ObjectPager::add(); if(tmp) new((caddr_t)tmp) T(object); return tmp;}

    inline T* push(const T& object)
        {T* tmp = ObjectPager::push(); if(tmp) new((caddr_t)tmp) T(object); return tmp;}

    inline listof& operator<<(const T& object)
        {T* tmp = ObjectPager::add(); if(tmp) new((caddr_t)tmp) T(object); return *this;}

    inline listof& operator>>(const T& object)
        {T* tmp = ObjectPager::push(); if(tmp) new((caddr_t)tmp) T(object); return *this;}

};

template <class T, unsigned I = 177, size_t M = 0, size_t P = 0>
class mapof : private keyassoc
{
public:
    /**
     * Construct an associated pointer hash map based on the class template.
     */
    inline mapof() : keyassoc(I, M, P) {};

    /**
     * Get the count of typed objects stored in our hash map.
     * @return typed objects in map.
     */
    inline unsigned count(void) const
        {return keyassoc::count();};

    /**
     * Purge the hash map of typed objects.
     */
    inline void purge(void)
        {keyassoc::purge();};

    /**
     * Lookup a typed object by name.
     * @param name of typed object to locate.
     * @return typed object pointer or NULL if not found.
     */
    inline T *locate(const char *name)
        {return static_cast<T*>(keyassoc::locate(name));}

    inline T *operator[](const char *name)
        {return static_cast<T*>(keyassoc::locate(name));}

    /**
     * Reference a typed object directly by name.
     * @param name of typed object to locate.
     * @return typed object pointer or NULL if not found.
     */
    inline T *operator()(const char *name)
        {return locate(name);};

    /**
     * Create mapped entry from scratch.
     * @param name to assign.
     */
    inline T *map(const char *name)
        {T *tmp = keyassoc::allocate(name, sizeof(T)); if(tmp) new((caddr_t)tmp) T;}

    /**
     * Remove a name and typed pointer association.  If managed key names are
     * used then the memory allocated for the name will be re-used.
     * @param name to remove.
     */
    inline void unmap(const char *name)
        {keyassoc::remove(name);};

    /**
     * Access to pager utilization stats.  This is needed because we
     * inherit keyassoc privately.
     * @return pager utilization, 0-100.
     */
    inline unsigned utilization(void)
        {return mempager::utilization();};

    /**
     * Access to number of pages allocated from heap for our associated
     * index pointer.  This is needed because we inherit keyassoc
     * privately.
     * @return count of heap pages used.
     */
    inline unsigned pages(void) const
        {return mempager::pages();};
};

/**
 * A typed template for using a key association with typed objects.
 * This essentially forms a form of "smart pointer" that is a reference
 * to specific typed objects by symbolic name.  This is commonly used as
 * for associated indexing of typed objects.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T, unsigned I = 177, size_t M = 0, size_t P = 0>
class assoc_pointer : private keyassoc
{
public:
    /**
     * Construct an associated pointer hash map based on the class template.
     */
    inline assoc_pointer() : keyassoc(I, M, P) {};

    /**
     * Get the count of typed objects stored in our hash map.
     * @return typed objects in map.
     */
    inline unsigned count(void) const
        {return keyassoc::count();}

    /**
     * Purge the hash map of typed objects.
     */
    inline void purge(void)
        {keyassoc::purge();}

    /**
     * Lookup a typed object by name.
     * @param name of typed object to locate.
     * @return typed object pointer or NULL if not found.
     */
    inline T *locate(const char *name)
        {return static_cast<T*>(keyassoc::locate(name));}

    inline T *operator[](const char *name)
        {return static_cast<T*>(keyassoc::locate(name));}


    /**
     * Reference a typed object directly by name.
     * @param name of typed object to locate.
     * @return typed object pointer or NULL if not found.
     */
    inline T *operator()(const char *name)
        {return locate(name);}

    /**
     * Assign a name for a pointer to a typed object.  If the name exists,
     * it is re-assigned with the new pointer value, otherwise it is created.
     * @param name to assign.
     * @param pointer of typed object to assign with name.
     * @return false if failed because name is too long for managed table.
     */
    inline bool assign(char *name, T *pointer)
        {return keyassoc::assign(name, pointer);}

    /**
     * Create a new name in the association table and assign typed object.
     * @param name to create.
     * @param pointer of typed object to assign with name.
     * @return false if already exists or name is too long for managed table.
     */
    inline bool create(char *name, T *pointer)
        {return keyassoc::create(name, pointer);}

    /**
     * Remove a name and typed pointer association.  If managed key names are
     * used then the memory allocated for the name will be re-used.
     * @param name to remove.
     */
    inline void remove(char *name)
        {keyassoc::remove(name);}

    /**
     * Access to pager utilization stats.  This is needed because we
     * inherit keyassoc privately.
     * @return pager utilization, 0-100.
     */
    inline unsigned utilization(void) const
        {return mempager::utilization();}

    /**
     * Access to number of pages allocated from heap for our associated
     * index pointer.  This is needed because we inherit keyassoc
     * privately.
     * @return count of heap pages used.
     */
    inline unsigned pages(void) const
        {return mempager::pages();}
};

/**
 * Mempager managed type factory for pager pool objects.  This is used to
 * construct a type factory that creates and manages typed objects derived
 * from PagerObject which can be managed through a private heap.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class pager : private MemoryRedirect, private PagerPool
{
public:
    /**
     * Construct a pager and optionally assign a private pager heap.
     * @param heap pager to use.  If NULL, uses global heap.
     */
    inline pager(mempager *heap = NULL) : MemoryRedirect(heap), PagerPool() {};

    /**
     * Create a managed object by casting reference.
     * @return pointer to typed managed pager pool object.
     */
    inline T *operator()(void)
        {return new(get(sizeof(T))) T;};

    /**
     * Create a managed object by pointer reference.
     * @return pointer to typed managed pager pool object.
     */
    inline T *operator*()
        {return new(get(sizeof(T))) T;};
};

/**
 * A template class for a hash pager.  This creates objects from a pager
 * pool when they do not already exist in the hash map.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T, unsigned M = 177>
class keypager : public mempager
{
private:
    NamedObject *idx[M];

public:
    /**
     * Create the object cache.
     * @param size of allocation units.
     */
    inline keypager(size_t size) : mempager(size) {};

    /**
     * Destroy the hash pager by purging the index chains and memory pools.
     */
    inline ~keypager()
        {NamedObject::purge(idx, M); mempager::purge();};

    /**
     * Find a typed object derived from NamedObject in the hash map by name.
     * If the object is not found, it is created from the memory pool.
     * @param name to search for.
     * @return typed object if found through map or NULL.
     */
    inline T *get(const char *name) const {
        T *node = (static_cast<T*>(NamedObject::map(idx, name, M)));
        if(!node) {
            node = init<T>(static_cast<T*>(mempager::_alloc(sizeof(T))));
            node->NamedObject::add(idx, name, M);
        }
        return node;
    }

    /**
     * Test if a name exists in the pool.
     * @param name to test.
     * @return true if found.
     */
    bool test(const char *name) const
        {return NamedObject::map(idx, name, M) != NULL;};

    /**
     * Find a typed object derived from NamedObject in the hash map by name.
     * If the object is not found, it is created from the pager pool.
     * @param name to search for.
     * @return typed object if found through map or NULL.
     */
    inline T *operator[](const char *name) const
        {return get(name);};

    /**
     * Find first typed object in hash map to iterate.
     * @return first typed object or NULL if nothing in list.
     */
    inline T *begin(void) const
        {return static_cast<T*>(NamedObject::skip(idx, NULL, M));};

    /**
     * Find next typed object in hash map for iteration.
     * @param current typed object we are referencing.
     * @return next iterative object or NULL if past end of map.
     */
    inline T *next(T *current) const
        {return static_cast<T*>(NamedObject::skip(idx, current, M));};

    /**
     * Count the number of typed objects in our hash map.
     * @return count of typed objects.
     */
    inline unsigned count(void) const
        {return NamedObject::count(idx, M);};

    /**
     * Convert our hash map into a linear object pointer array.  The
     * object pointer array is created from the heap and must be deleted
     * when no longer used.
     * @return array of typed named object pointers.
     */
    inline T **index(void) const
        {return NamedObject::index(idx, M);};

    /**
     * Convert our hash map into an alphabetically sorted linear object
     * pointer array.  The object pointer array is created from the heap
     * and must be deleted when no longer used.
     * @return sorted array of typed named object pointers.
     */
    inline T **sort(void) const
        {return NamedObject::sort(NamedObject::index(idx, M));};

    /**
     * Convenience typedef for iterative pointer.
     */
    typedef linked_pointer<T> iterator;
};

/**
 * A convenience type for paged string lists.
 */
typedef StringPager stringlist_t;

/**
 * A convenience type for paged string list items.
 */
typedef StringPager::member stringlistitem_t;

/**
 * A convenience type for using DirPager directly.
 */
typedef DirPager dirlist_t;

inline const char *shift(stringlist_t& list)
    {return list.pull();}

inline void unshift(stringlist_t& list, const char *text)
    {list.push(text);}


inline String str(StringPager& list, const char *prefix = NULL, const char *middle = NULL, const char *suffix = NULL)
    {return list.join(prefix, middle, suffix);}

END_NAMESPACE

#endif