This file is indexed.

/usr/include/ucommon/thread.h is in libucommon-dev 6.0.7-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
// Copyright (C) 2006-2010 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Thread classes and sychronization objects.
 * The theory behind ucommon thread classes is that they would be used
 * to create derived classes where thread-specific data can be stored as
 * member data of the derived class.  The run method is called when the
 * context is executed.  Since we use a pthread foundation, we support
 * both detached threads and joinable threads.  Objects based on detached
 * threads should be created with new, and will automatically delete when
 * the thread context exits.  Joinable threads will be joined with deleted.
 *
 * The theory behind ucommon sychronization objects is that all upper level
 * sychronization objects can be formed directly from a mutex and conditional.
 * This includes semaphores, barriers, rwlock, our own specialized conditional
 * lock, resource-bound locking, and recurive exclusive locks.  Using only
 * conditionals means we are not dependent on platform specific pthread
 * implimentations that may not impliment some of these, and hence improves
 * portability and consistency.  Given that our rwlocks are recursive access
 * locks, one can safely create read/write threading pairs where the read
 * threads need not worry about deadlocks and the writers need not either if
 * they only write-lock one instance at a time to change state.
 * @file ucommon/thread.h
 */

/**
 * An example of the thread queue class.  This may be relevant to producer-
 * consumer scenarios and realtime applications where queued messages are
 * stored on a re-usable object pool.
 * @example queue.cpp
 */

/**
 * A simple example of threading and join operation.
 * @example thread.cpp
 */

#ifndef _UCOMMON_THREAD_H_
#define _UCOMMON_THREAD_H_

#ifndef _UCOMMON_CPR_H_
#include <ucommon/cpr.h>
#endif

#ifndef _UCOMMON_ACCESS_H_
#include <ucommon/access.h>
#endif

#ifndef _UCOMMON_TIMERS_H_
#include <ucommon/timers.h>
#endif

#ifndef _UCOMMON_MEMORY_H_
#include <ucommon/memory.h>
#endif

NAMESPACE_UCOMMON

class SharedPointer;

/**
 * The conditional is a common base for other thread synchronizing classes.
 * Many of the complex sychronization objects, including barriers, semaphores,
 * and various forms of read/write locks are all built from the conditional.
 * This assures that the minimum functionality to build higher order thread
 * synchronizing objects is a pure conditional, and removes dependencies on
 * what may be optional features or functions that may have different
 * behaviors on different pthread implimentations and platforms.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT Conditional
{
private:
    friend class ConditionalAccess;

#if defined(_MSCONDITIONAL_)
    CRITICAL_SECTION mutex;
    CONDITION_VARIABLE cond;
#elif defined(_MSWINDOWS_)
    enum {SIGNAL = 0, BROADCAST = 1};
    HANDLE events[2];
    unsigned waiting;
    CRITICAL_SECTION mlock;
    CRITICAL_SECTION mutex;
#else
#ifndef __PTH__
    class __LOCAL attribute
    {
    public:
        pthread_condattr_t attr;
        attribute();
    };

    __LOCAL static attribute attr;
#endif

    pthread_cond_t cond;
    pthread_mutex_t mutex;
#endif

protected:
    friend class TimedEvent;

    /**
     * Conditional wait for signal on millisecond timeout.
     * @param timeout in milliseconds.
     * @return true if signalled, false if timer expired.
     */
    bool wait(timeout_t timeout);

    /**
     * Conditional wait for signal on timespec timeout.
     * @param timeout as a high resolution timespec.
     * @return true if signalled, false if timer expired.
     */
    bool wait(struct timespec *timeout);

#ifdef  _MSWINDOWS_
    inline void lock(void)
        {EnterCriticalSection(&mutex);};

    inline void unlock(void)
        {LeaveCriticalSection(&mutex);};

    void wait(void);
    void signal(void);
    void broadcast(void);

#else
    /**
     * Lock the conditional's supporting mutex.
     */
    inline void lock(void)
        {pthread_mutex_lock(&mutex);};

    /**
     * Unlock the conditional's supporting mutex.
     */
    inline void unlock(void)
        {pthread_mutex_unlock(&mutex);};

    /**
     * Wait (block) until signalled.
     */
    inline void wait(void)
        {pthread_cond_wait(&cond, &mutex);};

    /**
     * Signal the conditional to release one waiting thread.
     */
    inline void signal(void)
        {pthread_cond_signal(&cond);};

    /**
     * Signal the conditional to release all waiting threads.
     */
    inline void broadcast(void)
        {pthread_cond_broadcast(&cond);};
#endif

    /**
     * Initialize and construct conditional.
     */
    Conditional();

    /**
     * Destroy conditional, release any blocked threads.
     */
    ~Conditional();

public:
#if !defined(_MSWINDOWS_) && !defined(__PTH__)
    /**
     * Support function for getting conditional attributes for realtime
     * scheduling.
     * @return attributes to use for creating realtime conditionals.
     */
    static inline pthread_condattr_t *initializer(void)
        {return &attr.attr;};
#endif

    /**
     * Convert a millisecond timeout into use for high resolution
     * conditional timers.
     * @param hires timespec representation to set.
     * @param timeout to convert.
     */
    static void set(struct timespec *hires, timeout_t timeout);
};

/**
 * The conditional rw seperates scheduling for optizming behavior or rw locks.
 * This varient of conditonal seperates scheduling read (broadcast wakeup) and
 * write (signal wakeup) based threads.  This is used to form generic rwlock's
 * as well as the specialized condlock.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ConditionalAccess : private Conditional
{
protected:
#if defined _MSCONDITIONAL_
    CONDITION_VARIABLE bcast;
#elif !defined(_MSWINDOWS_)
    pthread_cond_t bcast;
#endif

    unsigned pending, waiting, sharing;

    /**
     * Conditional wait for signal on millisecond timeout.
     * @param timeout in milliseconds.
     * @return true if signalled, false if timer expired.
     */
    bool waitSignal(timeout_t timeout);

    /**
     * Conditional wait for broadcast on millisecond timeout.
     * @param timeout in milliseconds.
     * @return true if signalled, false if timer expired.
     */
    bool waitBroadcast(timeout_t timeout);


    /**
     * Conditional wait for signal on timespec timeout.
     * @param timeout as a high resolution timespec.
     * @return true if signalled, false if timer expired.
     */
    bool waitSignal(struct timespec *timeout);

    /**
     * Conditional wait for broadcast on timespec timeout.
     * @param timeout as a high resolution timespec.
     * @return true if signalled, false if timer expired.
     */
    bool waitBroadcast(struct timespec *timeout);

    /**
     * Convert a millisecond timeout into use for high resolution
     * conditional timers.
     * @param hires timespec representation to set.
     * @param timeout to convert.
     */
    inline static void set(struct timespec *hires, timeout_t timeout)
        {Conditional::set(hires, timeout);};


#ifdef  _MSWINDOWS_
    inline void lock(void)
        {EnterCriticalSection(&mutex);};

    inline void unlock(void)
        {LeaveCriticalSection(&mutex);};

    void waitSignal(void);
    void waitBroadcast(void);

    inline void signal(void)
        {Conditional::signal();};

    inline void broadcast(void)
        {Conditional::broadcast();};

#else
    /**
     * Lock the conditional's supporting mutex.
     */
    inline void lock(void)
        {pthread_mutex_lock(&mutex);};

    /**
     * Unlock the conditional's supporting mutex.
     */
    inline void unlock(void)
        {pthread_mutex_unlock(&mutex);};

    /**
     * Wait (block) until signalled.
     */
    inline void waitSignal(void)
        {pthread_cond_wait(&cond, &mutex);};

    /**
     * Wait (block) until broadcast.
     */
    inline void waitBroadcast(void)
        {pthread_cond_wait(&bcast, &mutex);};


    /**
     * Signal the conditional to release one signalled thread.
     */
    inline void signal(void)
        {pthread_cond_signal(&cond);};

    /**
     * Signal the conditional to release all broadcast threads.
     */
    inline void broadcast(void)
        {pthread_cond_broadcast(&bcast);};
#endif
public:
    /**
     * Initialize and construct conditional.
     */
    ConditionalAccess();

    /**
     * Destroy conditional, release any blocked threads.
     */
    ~ConditionalAccess();

    /**
     * Access mode shared thread scheduling.
     */
    void access(void);

    /**
     * Exclusive mode write thread scheduling.
     */
    void modify(void);

    /**
     * Release access mode read scheduling.
     */
    void release(void);

    /**
     * Complete exclusive mode write scheduling.
     */
    void commit(void);

    /**
     * Specify a maximum sharing (access) limit.  This can be used
     * to detect locking errors, such as when aquiring locks that are
     * not released.
     * @param max sharing level.
     */
    void limit_sharing(unsigned max);
};

/**
 * Event notification to manage scheduled realtime threads.  The timer
 * is advanced to sleep threads which then wakeup either when the timer
 * has expired or they are notified through the signal handler.  This can
 * be used to schedule and signal one-time completion handlers or for time
 * synchronized events signaled by an asychrononous I/O or event source.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT TimedEvent : public Timer
{
private:
#ifdef _MSWINDOWS_
    HANDLE event;
#else
    pthread_cond_t cond;
    bool signalled;
#endif
    pthread_mutex_t mutex;

protected:
    /**
     * Lock the object for wait or to manipulate derived data.  This is
     * relevant to manipulations in a derived class.
     */
    void lock(void);

    /**
     * Release the object lock after waiting.  This is relevent to
     * manipulations in a derived class.
     */
    void release(void);

    /**
     * Wait while locked.  This can be used in more complex derived
     * objects where we are concerned with synchronized access between
     * the signaling and event thread.  This can be used in place of
     * wait, but lock and release methods must be used around it.
     * @return true if time expired.
     */
    bool sync(void);

public:
    /**
     * Create event handler and timer for timing of events.
     */
    TimedEvent(void);

    /**
     * Create event handler and timer set to trigger a timeout.
     * @param timeout in milliseconds.
     */
    TimedEvent(timeout_t timeout);

    /**
     * Create event handler and timer set to trigger a timeout.
     * @param timeout in seconds.
     */
    TimedEvent(time_t timeout);

    /**
     * Destroy timer and release pending events.
     */
    ~TimedEvent();

    /**
     * Signal pending event.  Object may be locked or unlocked.  The
     * signalling thread may choose to lock and check a condition in
     * a derived class before signalling.
     */
    void signal(void);

    /**
     * Wait to be signalled or until timer expires.  This is a wrapper for
     * expire for simple completion events.
     * @param timeout to wait from last reset.
     * @return true if signaled, false if timeout.
     */
    bool wait(timeout_t timeout);

    /**
     * A simple wait until triggered.
     */
    void wait(void);

    /**
     * Reset triggered conditional.
     */
    void reset(void);
};

/**
 * Portable recursive exclusive lock.  This class is built from the
 * conditional and hence does not require support for non-standard and
 * platform specific extensions to pthread mutex to support recrusive
 * style mutex locking.  The exclusive protocol is implimented to support
 * exclusive_lock referencing.
 */
class __EXPORT RecursiveMutex : private Conditional, public ExclusiveAccess
{
protected:
    unsigned waiting;
    unsigned lockers;
    pthread_t locker;

    virtual void _lock(void);
    virtual void _unlock(void);

public:
    /**
     * Create rexlock.
     */
    RecursiveMutex();

    /**
     * Acquire or increase locking.
     */
    void lock(void);

    /**
     * Timed lock request.
     */
    bool lock(timeout_t timeout);

    /**
     * Release or decrease locking.
     */
    void release(void);
};

/**
 * A generic and portable implimentation of Read/Write locking.  This
 * class impliments classical read/write locking, including "timed" locks.
 * Support for scheduling threads to avoid writer starvation is also provided
 * for.  By building read/write locks from a conditional, we make them
 * available on pthread implimetations and other platforms which do not
 * normally include optional pthread rwlock's.  We also do not restrict
 * the number of threads that may use the lock.  Finally, both the exclusive
 * and shared protocols are implimented to support exclusive_lock and
 * shared_lock referencing.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ThreadLock : private ConditionalAccess, public ExclusiveAccess, public SharedAccess
{
protected:
    unsigned writers;
    pthread_t writeid;

    virtual void _lock(void);
    virtual void _share(void);
    virtual void _unlock(void);

public:
    /**
     * Guard class to apply scope based access locking to objects.  The rwlock
     * is located from the rwlock pool rather than contained in the target
     * object, and the read lock is released when the guard object falls out of
     * scope.  This is essentially an automation mechanism for mutex::reader.
     * @author David Sugar <dyfet@gnutelephony.org>
     */
    class __EXPORT guard_reader
    {
    private:
        const void *object;

    public:
        /**
          * Create an unitialized instance of guard.  Usually used with a
          * guard = operator.
          */
        guard_reader();

        /**
         * Construct a guard for a specific object.
         * @param object to guard.
         */
        guard_reader(const void *object);

        /**
         * Release mutex when guard falls out of scope.
         */
        ~guard_reader();

        /**
         * Set guard to mutex lock a new object.  If a lock is currently
         * held, it is released.
         * @param object to guard.
         */
        void set(const void *object);

        /**
         * Prematurely release a guard.
         */
        void release(void);

        /**
         * Set guard to read lock a new object.  If a lock is currently
         * held, it is released.
         * @param pointer to object to guard.
         */
        inline void operator=(const void *pointer)
            {set(pointer);};
    };

    /**
     * Guard class to apply scope based exclusive locking to objects.  The rwlock
     * is located from the rwlock pool rather than contained in the target
     * object, and the write lock is released when the guard object falls out of
     * scope.  This is essentially an automation mechanism for mutex::writer.
     * @author David Sugar <dyfet@gnutelephony.org>
     */
    class __EXPORT guard_writer
    {
    private:
        const void *object;

    public:
        /**
          * Create an unitialized instance of guard.  Usually used with a
          * guard = operator.
          */
        guard_writer();

        /**
         * Construct a guard for a specific object.
         * @param object to guard.
         */
        guard_writer(const void *object);

        /**
         * Release mutex when guard falls out of scope.
         */
        ~guard_writer();

        /**
         * Set guard to mutex lock a new object.  If a lock is currently
         * held, it is released.
         * @param object to guard.
         */
        void set(const void *object);

        /**
         * Prematurely release a guard.
         */
        void release(void);

        /**
         * Set guard to read lock a new object.  If a lock is currently
         * held, it is released.
         * @param pointer to object to guard.
         */
        inline void operator=(const void *pointer)
            {set(pointer);};
    };

    /**
     * Create an instance of a rwlock.
     */
    ThreadLock();

    /**
     * Request modify (write) access through the lock.
     * @param timeout in milliseconds to wait for lock.
     * @return true if locked, false if timeout.
     */
    bool modify(timeout_t timeout = Timer::inf);

    /**
     * Request shared (read) access through the lock.
     * @param timeout in milliseconds to wait for lock.
     * @return true if locked, false if timeout.
     */
    bool access(timeout_t timeout = Timer::inf);

    /**
     * Specify hash table size for guard protection.  The default is 1.
     * This should be called at initialization time from the main thread
     * of the application before any other threads are created.
     * @param size of hash table used for guarding.
     */
    static void indexing(unsigned size);

    /**
      * Write protect access to an arbitrary object.  This is like the
      * protect function of mutex.
      * @param object to protect.
      * @param timeout in milliseconds to wait for lock.
      * @return true if locked, false if timeout.
      */
    static bool writer(const void *object, timeout_t timeout = Timer::inf);

    /**
     * Shared access to an arbitrary object.  This is based on the protect
     * function of mutex.
     * @param object to share.
     * @param timeout in milliseconds to wait for lock.
     * @return true if shared, false if timeout.
     */
    static bool reader(const void *object, timeout_t timeout = Timer::inf);

    /**
     * Release an arbitrary object that has been protected by a rwlock.
     * @param object to release.
     */
    static void release(const void *object);

    /**
     * Release the lock.
     */
    void release(void);
};

/**
 * Class for resource bound memory pools between threads.  This is used to
 * support a memory pool allocation scheme where a pool of reusable objects
 * may be allocated, and the pool renewed by releasing objects or back.
 * When the pool is used up, a pool consuming thread then must wait for
 * a resource to be freed by another consumer (or timeout).  This class is
 * not meant to be used directly, but rather to build the synchronizing
 * control between consumers which might be forced to wait for a resource.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ReusableAllocator : protected Conditional
{
protected:
    ReusableObject *freelist;
    unsigned waiting;

    /**
     * Initialize reusable allocator through a conditional.  Zero free list.
     */
    ReusableAllocator();

    /**
     * Get next reusable object in the pool.
     * @param object from list.
     * @return next object.
     */
    inline ReusableObject *next(ReusableObject *object)
        {return object->getNext();};

    /**
     * Release resuable object
     * @param object being released.
     */
    void release(ReusableObject *object);
};

/**
 * An optimized and convertable shared lock.  This is a form of read/write
 * lock that has been optimized, particularly for shared access.  Support
 * for scheduling access around writer starvation is also included.  The
 * other benefits over traditional read/write locks is that the code is
 * a little lighter, and read (shared) locks can be converted to exclusive
 * (write) locks to perform brief modify operations and then returned to read
 * locks, rather than having to release and re-aquire locks to change mode.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ConditionalLock : protected ConditionalAccess, public SharedAccess
{
protected:
    class Context : public LinkedObject
    {
    public:
        inline Context(LinkedObject **root) : LinkedObject(root) {};

        pthread_t thread;
        unsigned count;
    };

    LinkedObject *contexts;

    virtual void _share(void);
    virtual void _unlock(void);

    Context *getContext(void);

public:
    /**
     * Construct conditional lock for default concurrency.
     */
    ConditionalLock();

    /**
     * Destroy conditional lock.
     */
    ~ConditionalLock();

    /**
     * Acquire write (exclusive modify) lock.
     */
    void modify(void);

    /**
     * Commit changes / release a modify lock.
     */
    void commit(void);

    /**
     * Acquire access (shared read) lock.
     */
    void access(void);

    /**
     * Release a shared lock.
     */
    void release(void);

    /**
     * Convert read lock into exclusive (write/modify) access.  Schedule
     * when other readers sharing.
     */
    virtual void exclusive(void);

    /**
     * Return an exclusive access lock back to share mode.
     */
    virtual void share(void);
};

/**
 * A portable implimentation of "barrier" thread sychronization.  A barrier
 * waits until a specified number of threads have all reached the barrier,
 * and then releases all the threads together.  This implimentation works
 * regardless of whether the thread library supports barriers since it is
 * built from conditional.  It also differs in that the number of threads
 * required can be changed dynamically at runtime, unlike pthread barriers
 * which, when supported, have a fixed limit defined at creation time.  Since
 * we use conditionals, another feature we can add is optional support for a
 * wait with timeout.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT barrier : private Conditional
{
private:
    unsigned count;
    unsigned waits;

public:
    /**
     * Construct a barrier with an initial size.
     * @param count of threads required.
     */
    barrier(unsigned count);

    /**
     * Destroy barrier and release pending threads.
     */
    ~barrier();

    /**
     * Dynamically alter the number of threads required.  If the size is
     * set below the currently waiting threads, then the barrier releases.
     * @param count of threads required.
     */
    void set(unsigned count);

    /**
     * Dynamically increment the number of threads required.
     */
    void inc(void);

    /**
     * Reduce the number of threads required.
     */
    void dec(void);

    /**
     * Alternative prefix form of the same increment operation.
     * @return the current amount of threads.
     */
    unsigned operator++(void);

    unsigned operator--(void);

    /**
     * Wait at the barrier until the count of threads waiting is reached.
     */
    void wait(void);

    /**
     * Wait at the barrier until either the count of threads waiting is
     * reached or a timeout has occurred.
     * @param timeout to wait in milliseconds.
     * @return true if barrier reached, false if timer expired.
     */
    bool wait(timeout_t timeout);
};

/**
 * A portable counting semaphore class.  A semaphore will allow threads
 * to pass through it until the count is reached, and blocks further threads.
 * Unlike pthread semaphore, our semaphore class supports it's count limit
 * to be altered during runtime and the use of timed waits.  This class also
 * implements the shared_lock protocol.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT Semaphore : public SharedAccess, protected Conditional
{
protected:
    unsigned count, waits, used;

    virtual void _share(void);
    virtual void _unlock(void);

public:
    /**
     * Construct a semaphore with an initial count of threads to permit.
     */
    Semaphore(unsigned count = 0);

    /**
     * Wait until the semphore usage count is less than the thread limit.
     * Increase used count for our thread when unblocked.
     */
    void wait(void);

    /**
     * Wait until the semphore usage count is less than the thread limit.
     * Increase used count for our thread when unblocked, or return without
     * changing if timed out.
     * @param timeout to wait in millseconds.
     * @return true if success, false if timeout.
     */
    bool wait(timeout_t timeout);

    /**
     * Alter semaphore limit at runtime
     * @param count of threads to allow.
     */
    void set(unsigned count);

    /**
     * Release the semaphore after waiting for it.
     */
    void release(void);

    /**
     * Convenience operator to wait on a counting semaphore.
     */
    inline void operator++(void)
        {wait();};

    /**
     * Convenience operator to release a counting semaphore.
     */
    inline void operator--(void)
        {release();};
};

/**
 * Generic non-recursive exclusive lock class.  This class also impliments
 * the exclusive_lock protocol.  In addition, an interface is offered to
 * support dynamically managed mutexes which are internally pooled.  These
 * can be used to protect and serialize arbitrary access to memory and
 * objects on demand.  This offers an advantage over embedding mutexes to
 * serialize access to individual objects since the maximum number of
 * mutexes will never be greater than the number of actually running threads
 * rather than the number of objects being potentially protected.  The
 * ability to hash the pointer address into an indexed table further optimizes
 * access by reducing the chance for collisions on the primary index mutex.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT Mutex : public ExclusiveAccess
{
protected:
    pthread_mutex_t mlock;

    virtual void _lock(void);
    virtual void _unlock(void);

public:
    /**
     * Guard class to apply scope based mutex locking to objects.  The mutex
     * is located from the mutex pool rather than contained in the target
     * object, and the lock is released when the guard object falls out of
     * scope.  This is essentially an automation mechanism for mutex::protect.
     * @author David Sugar <dyfet@gnutelephony.org>
     */
    class __EXPORT guard
    {
    private:
        const void *object;

    public:
        /**
          * Create an unitialized instance of guard.  Usually used with a
          * guard = operator.
          */
        guard();

        /**
         * Construct a guard for a specific object.
         * @param object to guard.
         */
        guard(const void *object);

        /**
         * Release mutex when guard falls out of scope.
         */
        ~guard();

        /**
         * Set guard to mutex lock a new object.  If a lock is currently
         * held, it is released.
         * @param object to guard.
         */
        void set(const void *object);

        /**
         * Prematurely release a guard.
         */
        void release(void);

        /**
         * Set guard to mutex lock a new object.  If a lock is currently
         * held, it is released.
         * @param pointer to object to guard.
         */
        inline void operator=(void *pointer)
            {set(pointer);};
    };


    /**
     * Create a mutex lock.
     */
    Mutex();

    /**
     * Destroy mutex lock, release waiting threads.
     */
    ~Mutex();

    /**
     * Acquire mutex lock.  This is a blocking operation.
     */
    inline void acquire(void)
        {pthread_mutex_lock(&mlock);};

    /**
     * Acquire mutex lock.  This is a blocking operation.
     */
    inline void lock(void)
        {pthread_mutex_lock(&mlock);};

    /**
     * Release acquired lock.
     */
    inline void unlock(void)
        {pthread_mutex_unlock(&mlock);};

    /**
     * Release acquired lock.
     */
    inline void release(void)
        {pthread_mutex_unlock(&mlock);};

    /**
     * Convenience function to acquire os native mutex lock directly.
     * @param lock to acquire.
     */
    inline static void acquire(pthread_mutex_t *lock)
        {pthread_mutex_lock(lock);};

    /**
     * Convenience function to release os native mutex lock directly.
     * @param lock to release.
     */
    inline static void release(pthread_mutex_t *lock)
        {pthread_mutex_unlock(lock);};

    /**
     * Specify hash table size for guard protection.  The default is 1.
     * This should be called at initialization time from the main thread
     * of the application before any other threads are created.
     * @param size of hash table used for guarding.
     */
    static void indexing(unsigned size);

    /**
     * Specify pointer/object/resource to guard protect.  This uses a
     * dynamically managed mutex.
     * @param pointer to protect.
     */
    static void protect(const void *pointer);

    /**
     * Specify a pointer/object/resource to release.
     * @param pointer to release.
     */
    static void release(const void *pointer);
};

/**
 * A mutex locked object smart pointer helper class.  This is particularly
 * useful in referencing objects which will be protected by the mutex
 * protect function.  When the pointer falls out of scope, the protecting
 * mutex is also released.  This is meant to be used by the typed
 * mutex_pointer template.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT auto_protect
{
private:
    // cannot copy...
    inline auto_protect(const auto_object &pointer) {};

protected:
    const void *object;

    auto_protect();

public:
    /**
     * Construct a protected pointer referencing an existing object.
     * @param object we point to.
     */
    auto_protect(const void *object);

    /**
     * Delete protected pointer.  When it falls out of scope the associated
     * mutex is released.
     */
    ~auto_protect();

    /**
     * Manually release the pointer.  This releases the mutex.
     */
    void release(void);

    /**
     * Test if the pointer is not set.
     * @return true if the pointer is not referencing anything.
     */
    inline bool operator!() const
        {return object == NULL;};

    /**
     * Test if the pointer is referencing an object.
     * @return true if the pointer is currently referencing an object.
     */
    inline operator bool() const
        {return object != NULL;};

    /**
     * Set our pointer to a specific object.  If the pointer currently
     * references another object, the associated mutex is released.  The
     * pointer references our new object and that new object is locked.
     * @param object to assign to.
     */
    void operator=(const void *object);
};

/**
 * An object pointer that uses mutex to assure thread-safe singleton use.
 * This class is used to support a threadsafe replacable pointer to a object.
 * This class is used to form and support the templated locked_pointer class
 * and used with the locked_release class.  An example of where this might be
 * used is in config file parsers, where a seperate thread may process and
 * generate a new config object for new threads to refernce, while the old
 * configuration continues to be used by a  reference counted instance that
 * goes away when it falls out of scope.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT LockedPointer
{
private:
    friend class locked_release;
    pthread_mutex_t mutex;
    ObjectProtocol *pointer;

protected:
    /**
     * Create an instance of a locked pointer.
     */
    LockedPointer();

    /**
     * Replace existing object with a new one for next request.
     * @param object to register with pointer.
     */
    void replace(ObjectProtocol *object);

    /**
     * Create a duplicate reference counted instance of the current object.
     * @return duplicate reference counted object.
     */
    ObjectProtocol *dup(void);

    /**
     * Replace existing object through assignment.
     * @param object to assign.
     */
    inline void operator=(ObjectProtocol *object)
        {replace(object);};
};

/**
 * Shared singleton object.  A shared singleton object is a special kind of
 * object that may be shared by multiple threads but which only one active
 * instance is allowed to exist.  The shared object is managed by the
 * templated shared pointer class, and is meant to be inherited as a base
 * class for the derived shared singleton type.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT SharedObject
{
protected:
    friend class SharedPointer;

    /**
     * Commit is called when a shared singleton is accepted and replaces
     * a prior instance managed by a shared pointer.  Commit occurs
     * when replace is called on the shared pointer, and is assured to
     * happen only when no threads are accessing either the current
     * or the prior instance that was previously protected by the pointer.
     * @param pointer that now holds the object.
     */
    virtual void commit(SharedPointer *pointer);

public:
    /**
     * Allows inherited virtual.
     */
    virtual ~SharedObject();
};

/**
 * The shared pointer is used to manage a singleton instance of shared object.
 * This class is used to support the templated shared_pointer class and the
 * shared_release class, and is not meant to be used directly or as a base
 * for anything else.  One or more threads may aquire a shared lock to the
 * singleton object through this pointer, and it can only be replaced with a
 * new singleton instance when no threads reference it.  The conditional lock
 * is used to manage shared access for use and exclusive access when modified.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT SharedPointer : protected ConditionalAccess
{
private:
    friend class shared_release;
    SharedObject *pointer;

protected:
    /**
     * Created shared locking for pointer.  Must be assigned by replace.
     */
    SharedPointer();

    /**
     * Destroy lock and release any blocked threads.
     */
    ~SharedPointer();

    /**
     * Replace existing singleton instance with new one.  This happens
     * during exclusive locking, and the commit method of the object
     * will be called.
     * @param object being set.
     */
    void replace(SharedObject *object);

    /**
     * Acquire a shared reference to the singleton object.  This is a
     * form of shared access lock.  Derived classes and templates access
     * "release" when the shared pointer is no longer needed.
     * @return shared object.
     */
    SharedObject *share(void);
};

/**
 * An abstract class for defining classes that operate as a thread.  A derived
 * thread class has a run method that is invoked with the newly created
 * thread context, and can use the derived object to store all member data
 * that needs to be associated with that context.  This means the derived
 * object can safely hold thread-specific data that is managed with the life
 * of the object, rather than having to use the clumsy thread-specific data
 * management and access functions found in thread support libraries.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT Thread
{
protected:
// may be used in future if we need cancelable threads...
#ifdef  _MSWINDOWS_
    HANDLE cancellor;
#else
    void *cancellor;
#endif

    enum {} reserved;   // cancel mode?
    pthread_t tid;
    size_t stack;
    int priority;

    /**
     * Create a thread object that will have a preset stack size.  If 0
     * is used, then the stack size is os defined/default.
     * @param stack size to use or 0 for default.
     */
    Thread(size_t stack = 0);

    /**
     * Map thread for get method.  This should be called from start of the
     * run() method of a derived class.
     */
    void map(void);

    /**
     * Check if running.
     */
    virtual bool is_active(void);

public:
    /**
     * Set thread priority without disrupting scheduling if possible.
     * Based on scheduling policy.  It is recommended that the process
     * is set for realtime scheduling, and this method is actually for
     * internal use.
     */
    void setPriority(void);

    /**
     * Yield execution context of the current thread. This is a static
     * and may be used anywhere.
     */
    static void yield(void);

    /**
     * Sleep current thread for a specified time period.
     * @param timeout to sleep for in milliseconds.
     */
    static void sleep(timeout_t timeout);

    /**
     * Get mapped thread object.  This returns the mapped base class of the
     * thread object of the current executing context.  You will need to
     * cast to the correct derived class to access derived thread-specific
     * storage.  If the current thread context is not mapped NULL is returned.
     */
    static Thread *get(void);

    /**
     * Abstract interface for thread context run method.
     */
    virtual void run(void) = 0;

    /**
     * Destroy thread object, thread-specific data, and execution context.
     */
    virtual ~Thread();

    /**
     * Exit the thread context.  This function should NO LONGER be called
     * directly to exit a running thread.  Instead this method will only be
     * used to modify the behavior of the thread context at thread exit,
     * including detached threads which by default delete themselves.  This
     * documented usage was changed to support Mozilla NSPR exit behavior
     * in case we support NSPR as an alternate thread runtime in the future.
     */
    virtual void exit(void);

    /**
     * Used to initialize threading library.  May be needed for some platforms.
     */
    static void init(void);

    /**
     * Used to specify scheduling policy for threads above priority "0".
     * Normally we apply static realtime policy SCHED_FIFO (default) or
     * SCHED_RR.  However, we could apply SCHED_OTHER, etc.
     */
    static void policy(int polid);

    /**
     * Set concurrency level of process.  This is essentially a portable
     * wrapper for pthread_setconcurrency.
     */
    static void concurrency(int level);

    /**
     * Determine if two thread identifiers refer to the same thread.
     * @param thread1 to test.
     * @param thread2 to test.
     * @return true if both are the same context.
     */
    static bool equal(pthread_t thread1, pthread_t thread2);

    /**
     * Get current thread id.
     * @return thread id.
     */
    static pthread_t self(void);

    inline operator bool()
        {return is_active();}

    inline bool operator!()
        {return !is_active();}

    inline bool isRunning(void)
        {return is_active();}
};

/**
 * A child thread object that may be joined by parent.  A child thread is
 * a type of thread in which the parent thread (or process main thread) can
 * then wait for the child thread to complete and then delete the child object.
 * The parent thread can wait for the child thread to complete either by
 * calling join, or performing a "delete" of the derived child object.  In
 * either case the parent thread will suspend execution until the child thread
 * exits.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT JoinableThread : public Thread
{
protected:
#ifdef  _MSWINDOWS_
    HANDLE running;
#else
    volatile bool running;
#endif
    volatile bool joining;

    /**
     * Create a joinable thread with a known context stack size.
     * @param size of stack for thread context or 0 for default.
     */
    JoinableThread(size_t size = 0);

    /**
     * Delete child thread.  Parent thread suspends until child thread
     * run method completes or child thread calls it's exit method.
     */
    virtual ~JoinableThread();

    /**
     * Join thread with parent.  Calling from a child thread to exit is
     * now depreciated behavior and in the future will not be supported.
     * Threads should always return through their run() method.
     */
    void join(void);

    bool is_active(void);

    virtual void run(void) = 0;

public:

    /**
     * Start execution of child context.  This must be called after the
     * child object is created (perhaps with "new") and before it can be
     * joined.  This method actually begins the new thread context, which
     * then calls the object's run method.  Optionally raise the priority
     * of the thread when it starts under realtime priority.
     * @param priority of child thread.
     */
    void start(int priority = 0);

    /**
     * Start execution of child context as background thread.  This is
     * assumed to be off main thread, with a priority lowered by one.
     */
    inline void background(void)
        {start(-1);};
};

/**
 * A detached thread object that is stand-alone.  This object has no
 * relationship with any other running thread instance will be automatically
 * deleted when the running thread instance exits, either by it's run method
 * exiting, or explicity calling the exit member function.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT DetachedThread : public Thread
{
protected:
    bool active;

    /**
     * Create a detached thread with a known context stack size.
     * @param size of stack for thread context or 0 for default.
     */
    DetachedThread(size_t size = 0);

    /**
     * Destroys object when thread context exits.  Never externally
     * deleted.  Derived object may also have destructor to clean up
     * thread-specific member data.
     */
    ~DetachedThread();

    /**
     * Exit context of detached thread.  Thread object will be deleted.
     * This function should NO LONGER be called directly to exit a running
     * thread.  Instead, the thread should only "return" through the run()
     * method to exit.  The documented usage was changed so that exit() can
     * still be used to modify the "delete this" behavior of detached threads
     * while merging thread exit behavior with Mozilla NSPR.
     */
    void exit(void);

    bool is_active(void);

    virtual void run(void) = 0;

public:
    /**
     * Start execution of detached context.  This must be called after the
     * object is created (perhaps with "new"). This method actually begins
     * the new thread context, which then calls the object's run method.
     * @param priority to start thread with.
     */
    void start(int priority = 0);
};

/**
 * Auto-pointer support class for locked objects.  This is used as a base
 * class for the templated locked_instance class that uses the managed
 * LockedPointer to assign a reference to an object.  When the locked
 * instance falls out of scope, the object is derefenced.  Ideally the
 * pointer typed object should be based on the reference counted object class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT locked_release
{
protected:
    ObjectProtocol *object; /**< locked object protected by locked_release */

    /**
     * Create an unassigned locked object pointer base.
     */
    locked_release();

    /**
     * Construct a locked object instance base from an existing instance.  This
     * will create a duplicate (retained) reference.
     * @param object to copy from.
     */
    locked_release(const locked_release &object);

public:
    /**
     * Construct a locked object instance base from a LockedPointer.  References
     * a retained instance of the underlying object from the LockedPointer.
     * @param pointer of locked pointer to assign from.
     */
    locked_release(LockedPointer &pointer);

    /**
     * Auto-release pointer to locked object instance.  This is used to release
     * a reference when the pointer template falls out of scope.
     */
    ~locked_release();

    /**
     * Manually release the object reference.
     */
    void release(void);

    /**
     * Assign a locked object pointer.  If an existing object is already
     * assigned, the existing pointer is released.
     * @param pointer reference through locked object.
     */
    locked_release &operator=(LockedPointer &pointer);
};

/**
 * Auto-pointer support class for shared singleton objects.  This is used as
 * a base class for the templated shared_instance class that uses shared
 * access locking through the SharedPointer class.  When the shared instance
 * falls out of scope, the SharedPointer lock is released.  The pointer
 * typed object must be based on the SharedObject class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */

class __EXPORT shared_release
{
protected:
    SharedPointer *ptr; /**< Shared lock for protected singleton */

    /**
     * Create an unassigned shared singleton object pointer base.
     */
    shared_release();

    /**
     * Construct a shared object instance base from an existing instance.  This
     * will assign an additional shared lock.
     * @param object to copy from.
     */
    shared_release(const shared_release &object);

public:
    /**
     * Access lock a shared singleton instance from a SharedPointer.
     * @param pointer of shared pointer to assign from.
     */
    shared_release(SharedPointer &pointer);

    /**
     * Auto-unlock shared lock for singleton instance protected by shared
     * pointer.  This is used to unlock when the instance template falls out
     * of scope.
     */
    ~shared_release();

    /**
     * Manually release access to shared singleton object.
     */
    void release(void);

    /**
     * Get pointer to singleton object that we have shared lock for.
     * @return shared object singleton.
     */
    SharedObject *get(void);

    /**
     * Assign shared lock access to shared singleton.  If an existing
     * shared lock is held for another pointer, it is released.
     * @param pointer access for shared object.
     */
    shared_release &operator=(SharedPointer &pointer);
};

/**
 * Templated shared pointer for singleton shared objects of specific type.
 * This is used as typed template for the SharedPointer object reference
 * management class.  This is used to supply a typed singleton shared
 * instance to the typed shared_instance template class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class shared_pointer : public SharedPointer
{
public:
    /**
     * Created shared locking for typed singleton pointer.
     */
    inline shared_pointer() : SharedPointer() {};

    /**
     * Acquire a shared (duplocate) reference to the typed singleton object.
     * This is a form of shared access lock.  Derived classes and templates
     * access conditionallock "release" when the shared pointer is no longer
     * needed.
     * @return typed shared object.
     */
    inline const T *dup(void)
        {return static_cast<const T*>(SharedPointer::share());};

    /**
     * Replace existing typed singleton instance with new one.  This happens
     * during exclusive locking, and the commit method of the typed object
     * will be called.
     * @param object being set.
     */
    inline void replace(T *object)
        {SharedPointer::replace(object);};

    /**
     * Replace existing typed singleton object through assignment.
     * @param object to assign.
     */
    inline void operator=(T *object)
        {replace(object);};

    /**
     * Access shared lock typed singleton object by pointer reference.
     * @return typed shared object.
     */
    inline T *operator*()
        {return dup();};
};

/**
 * Templated locked pointer for referencing locked objects of specific type.
 * This is used as typed template for the LockedPointer object reference
 * management class.  This is used to supply a typed locked instances
 * to the typed locked_instance template class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class locked_pointer : public LockedPointer
{
public:
    /**
     * Create an instance of a typed locked pointer.
     */
    inline locked_pointer() : LockedPointer() {};

    /**
     * Create a duplicate reference counted instance of the current typed
     * object.
     * @return duplicate reference counted typed object.
     */
    inline T* dup(void)
        {return static_cast<T *>(LockedPointer::dup());};

    /**
     * Replace existing typed object with a new one for next request.
     * @param object to register with pointer.
     */
    inline void replace(T *object)
        {LockedPointer::replace(object);};

    /**
     * Replace existing object through assignment.
     * @param object to assign.
     */
    inline void operator=(T *object)
        {replace(object);};

    /**
     * Create a duplicate reference counted instance of the current typed
     * object by pointer reference.
     * @return duplicate reference counted typed object.
     */
    inline T *operator*()
        {return dup();};
};

/**
 * A templated smart pointer instance for lock protected objects.
 * This is used to reference an instance of a typed locked_pointer.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class locked_instance : public locked_release
{
public:
    /**
     * Construct empty locked instance of typed object.
     */
    inline locked_instance() : locked_release() {};

    /**
     * Construct locked instance of typed object from matching locked_pointer.
     * @param pointer to get instance from.
     */
    inline locked_instance(locked_pointer<T> &pointer) : locked_release(pointer) {};

    /**
     * Extract instance of locked typed object by pointer reference.
     * @return instance of typed object.
     */
    inline T& operator*() const
        {return *(static_cast<T&>(object));};

    /**
     * Access member of instance of locked typed object by member reference.
     * @return instance of typed object.
     */
    inline T* operator->() const
        {return static_cast<T*>(object);};

    /**
     * Get pointer to instance of locked typed object.
     * @return instance of typed object.
     */
    inline T* get(void) const
        {return static_cast<T*>(object);};
};

/**
 * A templated smart pointer instance for shared singleton typed objects.
 * This is used to access the shared lock instance of the singleton.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class shared_instance : public shared_release
{
public:
    /**
     * Construct empty instance to reference shared typed singleton.
     */
    inline shared_instance() : shared_release() {};

    /**
     * Construct shared access instance of shared typed singleton from matching
     * shared_pointer.
     * @param pointer to get instance from.
     */
    inline shared_instance(shared_pointer<T> &pointer) : shared_release(pointer) {};

    /**
     * Access shared typed singleton object this instance locks and references.
     */
    inline const T& operator*() const
        {return *(static_cast<const T&>(ptr->pointer));};

    /**
     * Access member of shared typed singleton object this instance locks and
     * references.
     */
    inline const T* operator->() const
        {return static_cast<const T*>(ptr->pointer);};

    /**
     * Access pointer to typed singleton object this instance locks and
     * references.
     */
    inline const T* get(void) const
        {return static_cast<const T*>(ptr->pointer);};
};

/**
 * Typed smart locked pointer class.  This is used to manage references to
 * objects which are protected by an auto-generated mutex.  The mutex is
 * released when the pointer falls out of scope.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T>
class mutex_pointer : public auto_protect
{
public:
    /**
     * Create a pointer with no reference.
     */
    inline mutex_pointer() : auto_protect() {};

    /**
     * Create a pointer with a reference to a heap object.
     * @param object we are referencing.
     */
    inline mutex_pointer(T* object) : auto_protect(object) {};

    /**
     * Reference object we are pointing to through pointer indirection.
     * @return object we are pointing to.
     */
    inline T& operator*() const
        {return *(static_cast<T&>(auto_protect::object));};

    /**
     * Reference member of object we are pointing to.
     * @return reference to member of pointed object.
     */
    inline T* operator->() const
        {return static_cast<T*>(auto_protect::object);};

    /**
     * Get pointer to object.
     * @return pointer or NULL if we are not referencing an object.
     */
    inline T* get(void) const
        {return static_cast<T*>(auto_protect::object);};
};

/**
 * Convenience function to start a joinable thread.
 * @param thread to start.
 * @param priority of thread.
 */
inline void start(JoinableThread *thread, int priority = 0)
    {thread->start(priority);}

/**
 * Convenience function to start a detached thread.
 * @param thread to start.
 * @param priority of thread.
 */
inline void start(DetachedThread *thread, int priority = 0)
    {thread->start(priority);}

/**
 * Convenience type for using conditional locks.
 */
typedef ConditionalLock condlock_t;

/**
 * Convenience type for scheduling access.
 */
typedef ConditionalAccess accesslock_t;

/**
 * Convenience type for using timed events.
 */
typedef TimedEvent timedevent_t;

/**
 * Convenience type for using exclusive mutex locks.
 */
typedef Mutex mutex_t;

/**
 * Convenience type for using read/write locks.
 */
typedef ThreadLock rwlock_t;

/**
 * Convenience type for using recursive exclusive locks.
 */
typedef RecursiveMutex rexlock_t;

/**
 * Convenience type for using counting semaphores.
 */
typedef Semaphore semaphore_t;

/**
 * Convenience type for using thread barriers.
 */
typedef barrier barrier_t;

/**
 * Convenience function to wait on a barrier.
 * @param barrier to wait.
 */
inline void wait(barrier_t &barrier)
    {barrier.wait();}

/**
 * Convenience function to wait on a semaphore.
 * @param semaphore to wait on.
 * @param timeout to wait for.
 */
inline void wait(semaphore_t &semaphore, timeout_t timeout = Timer::inf)
    {semaphore.wait(timeout);}

/**
 * Convenience function to release a semaphore.
 * @param semaphore to release.
 */
inline void release(semaphore_t &semaphore)
    {semaphore.release();}

/**
 * Convenience function to acquire a mutex.
 * @param mutex to acquire.
 */
inline void acquire(mutex_t &mutex)
    {mutex.lock();}

/**
 * Convenience function to release a mutex.
 * @param mutex to release.
 */
inline void release(mutex_t &mutex)
    {mutex.release();}

/**
 * Convenience function to exclusively schedule conditional access.
 * @param lock to make exclusive.
 */
inline void modify(accesslock_t &lock)
    {lock.modify();}

/**
 * Convenience function to shared read schedule conditional access.
 * @param lock to access shared.
 */
inline void access(accesslock_t &lock)
    {lock.access();}

/**
 * Convenience function to release an access lock.
 * @param lock to release.
 */
inline void release(accesslock_t &lock)
    {lock.release();}

/**
 * Convenience function to commit an exclusive access lock.
 * lock.
 * @param lock to commit.
 */
inline void commit(accesslock_t &lock)
    {lock.commit();}

/**
 * Convenience function to exclusively lock shared conditional lock.
 * @param lock to make exclusive.
 */
inline void exclusive(condlock_t &lock)
    {lock.exclusive();}

/**
 * Convenience function to restore shared access on a conditional lock.
 * @param lock to make shared.
 */
inline void share(condlock_t &lock)
    {lock.share();}

/**
 * Convenience function to exclusively aquire a conditional lock.
 * @param lock to acquire for modify.
 */
inline void modify(condlock_t &lock)
    {lock.modify();}

/**
 * Convenience function to commit and release an exclusively locked conditional
 * lock.
 * @param lock to commit.
 */
inline void commit(condlock_t &lock)
    {lock.commit();}

/**
 * Convenience function for shared access to a conditional lock.
 * @param lock to access.
 */
inline void access(condlock_t &lock)
    {lock.access();}

/**
 * Convenience function to release shared access to a conditional lock.
 * @param lock to release.
 */
inline void release(condlock_t &lock)
    {lock.release();}

/**
 * Convenience function for exclusive write access to a read/write lock.
 * @param lock to write lock.
 * @param timeout to wait for exclusive locking.
 */
inline bool exclusive(rwlock_t &lock, timeout_t timeout = Timer::inf)
    {return lock.modify(timeout);}

/**
 * Convenience function for shared read access to a read/write lock.
 * @param lock to share read lock.
 * @param timeout to wait for shared access.
 */
inline bool share(rwlock_t &lock, timeout_t timeout = Timer::inf)
    {return lock.access(timeout);}

/**
 * Convenience function to release a shared lock.
 * @param lock to release.
 */
inline void release(rwlock_t &lock)
    {lock.release();}

/**
 * Convenience function to lock a shared recursive mutex lock.
 * @param lock to acquire.
 */
inline void lock(rexlock_t &lock)
    {lock.lock();}

/**
 * Convenience function to release a shared recursive mutex lock.
 * @param lock to release.
 */
inline void release(rexlock_t &lock)
    {lock.release();}

inline bool _sync_protect_(const void *obj)
{
    Mutex::protect(obj);
    return true;
}

inline bool _sync_release_(const void *obj)
{
    Mutex::release(obj);
    return false;
}

inline bool _rw_reader_(const void *obj)
{
    ThreadLock::reader(obj);
    return true;
}

inline bool _rw_writer_(const void *obj)
{
    ThreadLock::writer(obj);
    return true;
}

inline bool _rw_release_(const void *obj)
{
    ThreadLock::release(obj);
    return false;
}

#define ENTER_EXCLUSIVE \
    do { static pthread_mutex_t __sync__ = PTHREAD_MUTEX_INITIALIZER; \
        pthread_mutex_lock(&__sync__);

#define LEAVE_EXCLUSIVE \
    pthread_mutex_unlock(&__sync__);} while(0);

#define SYNC(obj) for(bool _sync_flag_ = _sync_protect_(obj); _sync_flag_; _sync_flag_ = _sync_release_(obj))

#define SHARED(obj) for(bool _sync_flag_ = _rw_reader_(obj); _sync_flag_; _sync_flag_ = _rw_release_(obj))

#define EXCLUSIVE(obj) for(bool _sync_flag_ = _rw_writer_(obj); _sync_flag_; _sync_flag_ = _rw_release_(obj))

END_NAMESPACE

#endif