/usr/include/ucommon/vector.h is in libucommon-dev 6.0.7-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | // Copyright (C) 2006-2010 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++. If not, see <http://www.gnu.org/licenses/>.
/**
* Basic array and reusable object factory heap support.
* This offers ucommon support for vector arrays, and for forming
* reusable object pools. Reusable object pools can be tied to local
* heaps and offer a means to create type factories that do not require
* global locking through malloc.
* @file ucommon/vector.h
*/
#ifndef _UCOMMON_VECTOR_H_
#define _UCOMMON_VECTOR_H_
#ifndef _UCOMMON_THREAD_H_
#include <ucommon/thread.h>
#endif
typedef unsigned short vectorsize_t;
NAMESPACE_UCOMMON
/**
* An array of reusable objects. This class is used to support the
* array_use template. A pool of objects are created which can be
* allocated as needed. Deallocated objects are returned to the pool
* so they can be reallocated later. This is a private fixed size heap.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT ArrayReuse : public ReusableAllocator
{
private:
size_t objsize;
unsigned count, limit, used;
caddr_t mem;
protected:
ArrayReuse(size_t objsize, unsigned c);
ArrayReuse(size_t objsize, unsigned c, void *memory);
public:
/**
* Destroy reusable private heap array.
*/
~ArrayReuse();
protected:
bool avail(void);
ReusableObject *get(timeout_t timeout);
ReusableObject *get(void);
ReusableObject *request(void);
};
/**
* A mempager source of reusable objects. This is used by the reuse_pager
* template to allocate new objects either from a memory pager used as
* a private heap, or from previously allocated objects that have been
* returned for reuse.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT PagerReuse : protected MemoryRedirect, protected ReusableAllocator
{
private:
unsigned limit, count;
size_t osize;
protected:
PagerReuse(mempager *pager, size_t objsize, unsigned count);
~PagerReuse();
bool avail(void);
ReusableObject *get(void);
ReusableObject *get(timeout_t timeout);
ReusableObject *request(void);
};
/**
* A managed vector for generic object pointers. This vector is memory
* managed at runtime by basic cow (copy-on-write) operations of a reference
* counted object list. This allows the size of the vector to be changed
* at runtime and for the vector to be copied by managing reference counted
* copies of the list of objects as needed.
*
* This class is somewhat analogous to the string class, but rather than
* holding a string "array of chars" that may be re-sized and reallocated,
* the Vector holds an array of Object pointers. Since the object pointers
* we store in the vector are objects inherited from Object, a vector can
* itself act as a vector of smart pointers to reference counted objects
* (derived from CountedObject).
* @author David Sugar <dyfet@gnutelephony.org>.
*/
class __EXPORT Vector
{
public:
class __EXPORT array : public CountedObject
{
public:
#pragma pack(1)
vectorsize_t max, len;
ObjectProtocol *list[1];
#pragma pack()
array(vectorsize_t size);
void dealloc(void);
void set(ObjectProtocol **items);
void add(ObjectProtocol **list);
void add(ObjectProtocol *obj);
void purge(void);
void inc(vectorsize_t adj);
void dec(vectorsize_t adj);
};
protected:
array *data;
array *create(vectorsize_t size) const;
virtual void release(void);
virtual void cow(vectorsize_t adj = 0);
ObjectProtocol **list(void) const;
friend class Vector::array;
protected:
/**
* Object handler for index outside vector range.
* @return default object, often NULL.
*/
virtual ObjectProtocol *invalid(void) const;
public:
/**
* npos is a constant for an "invalid" position value.
*/
static const vectorsize_t npos;
/**
* Create an initially empty vector.
*/
Vector();
/**
* Create a vector of size object pointers.
* @param size of vector to create.
*/
Vector(vectorsize_t size);
/**
* Create a vector of size objects from existing object pointers.
* This allocates the vector and initializes the object pointers from
* an existing array of object pointers. Either a specific vector
* size may be used, or the end of the vector will be found by a NULL
* object pointer.
* @param items to place into the vector.
* @param size of the vector to create, or use NULL item for end.
*/
Vector(ObjectProtocol **items, vectorsize_t size = 0);
/**
* Destroy the current reference counted vector of object pointers.
*/
virtual ~Vector();
/**
* Get the size of the vector (number of active members).
* @return number of active pointers in vector.
*/
vectorsize_t len(void) const;
/**
* Get the effective allocation space used by the vector. This is the
* number of pointers it can hold before it needs to be resized.
* @return storage size of vector.
*/
vectorsize_t size(void) const;
/**
* Get an object pointer from a specified member of the vector.
* @param index of member pointer to return. Negative values from end.
* @return object pointer of member.
*/
ObjectProtocol *get(int index) const;
/**
* Copy the vector to an external pointer array.
* @param mem array of external pointers to hold vector.
* @param max size of the external array.
* @return number of elements copied into external array.
*/
vectorsize_t get(void **mem, vectorsize_t max) const;
/**
* Get the first object pointer contained in the vector. Typically used
* in iterations.
* @return first object pointer.
*/
ObjectProtocol *begin(void) const;
/**
* Get the last object pointer contained in the vector. Typically used
* in iterations.
* @return last object pointer.
*/
ObjectProtocol *end(void) const;
/**
* Find the first instance of a specific pointer in the vector.
* @param pointer to locate in the vector.
* @param offset to start searching in vector.
* @return position of pointer in vector or npos if not found.
*/
vectorsize_t find(ObjectProtocol *pointer, vectorsize_t offset = 0) const;
/**
* Split the vector at a specified offset. All members after the split
* are de-referenced and dropped from the vector.
* @param position to split vector at.
*/
void split(vectorsize_t position);
/**
* Split the vector after a specified offset. All members before the split
* are de-referenced and dropped. The member starting at the split point
* becomes the first member of the vector.
* @param position to split vector at.
*/
void rsplit(vectorsize_t position);
/**
* Set a member of the vector to an object. If an existing member was
* present and is being replaced, it is de-referenced.
* @param position in vector to place object pointer.
* @param pointer to place in vector.
*/
void set(vectorsize_t position, ObjectProtocol *pointer);
/**
* Set the vector to a list of objects terminated by a NULL pointer.
* @param list of object pointers.
*/
void set(ObjectProtocol **list);
/**
* Add (append) a NULL terminated list of objects to the vector.
* @param list of object pointers to add.
*/
void add(ObjectProtocol **list);
/**
* Add (append) a single object pointer to the vector.
* @param pointer to add to vector.
*/
void add(ObjectProtocol *pointer);
/**
* De-reference and remove all pointers from the vector.
*/
void clear(void);
/**
* Re-size & re-allocate the total (allocated) size of the vector.
* @param size to allocate for vector.
*/
virtual bool resize(vectorsize_t size);
/**
* Set (duplicate) an existing vector into our vector.
* @param vector to duplicate.
*/
inline void set(Vector &vector)
{set(vector.list());};
/**
* Add (append) an existing vector to our vector.
* @param vector to append.
*/
inline void add(Vector &vector)
{add(vector.list());};
/**
* Return a pointer from the vector by array reference.
* @param index of vector member pointer to return.
*/
inline ObjectProtocol *operator[](int index)
{return get(index);};
/**
* Assign a member of the vector directly.
* @param position to assign.
* @param pointer to object to assign to vector.
*/
inline void operator()(vectorsize_t position, ObjectProtocol *pointer)
{set(position, pointer);};
/**
* Retrieve a member of the vector directly.
* @param position to retrieve object from.
* @return object pointer retrieved from vector.
*/
inline ObjectProtocol *operator()(vectorsize_t position)
{return get(position);};
/**
* Append a member to the vector directly.
* @param pointer to object to add to vector.
*/
inline void operator()(ObjectProtocol *pointer)
{add(pointer);};
/**
* Assign (copy) into our existing vector from another vector.
* @param vector to assign from.
*/
inline void operator=(Vector &vector)
{set(vector.list());};
/**
* Append into our existing vector from another vector.
* @param vector to append from.
*/
inline void operator+=(Vector &vector)
{add(vector.list());};
/**
* Concatenate into our existing vector from assignment list.
* @param vector to append from.
*/
inline Vector& operator+(Vector &vector)
{add(vector.list()); return *this;};
/**
* Release vector and concat vector from another vector.
* @param vector to assign from.
*/
Vector &operator^(Vector &vector);
/**
* Release our existing vector and duplicate from another vector. This
* differs from assign in that the allocated size of the vector is reset
* to the new list.
* @param vector to assign from.
*/
void operator^=(Vector &vector);
/**
* Drop first member of vector.
*/
void operator++();
/**
* Drop last member of the vector.
*/
void operator--();
/**
* Drop first specified members from the vector.
* @param count of members to drop.
*/
void operator+=(vectorsize_t count);
/**
* Drop last specified members from the vector.
* @param count of members to drop.
*/
void operator-=(vectorsize_t count);
/**
* Compute the effective vector size of a list of object pointers.
* The size is found as the NULL pointer in the list.
* @return size of list.
*/
static vectorsize_t size(void **list);
};
/**
* Vector with fixed size member list. This is analogous to the memstring
* class and is used to tie a vector to a fixed list in memory.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT MemVector : public Vector
{
private:
bool resize(vectorsize_t size);
void cow(vectorsize_t adj = 0);
void release(void);
friend class Vector::array;
public:
/**
* Create and manage a vector stored in fixed memory.
* @param pointer to where our vector list lives.
* @param size of vector list in memory.
*/
MemVector(void *pointer, vectorsize_t size);
/**
* Destroy the vector.
*/
~MemVector();
/**
* Assign an existing vector into our fixed vector list.
* @param vector to copy from.
*/
inline void operator=(Vector &vector)
{set(vector);};
};
/**
* A templated vector for a list of a specific Object subtype. The
* templated type must be derived from Object.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template<class T>
class vectorof : public Vector
{
public:
/**
* Create an empty vector for specified type.
*/
inline vectorof() : Vector() {};
/**
* Create an empty vector of allocated size for specified type.
* @param size of vector to allocate.
*/
inline vectorof(vectorsize_t size) : Vector(size) {};
inline T& operator[](int index)
{return static_cast<T&>(Vector::get(index));};
inline const T& at(int index)
{return static_cast<const T&>(Vector::get(index));};
/**
* Retrieve a typed member of the vector directly.
* @param position to retrieve object from.
* @return typed object pointer retrieved from vector.
*/
inline T *operator()(vectorsize_t position)
{return static_cast<T *>(Vector::get(position));};
/**
* Get the first typed object pointer contained in the vector.
* @return first typed object pointer.
*/
inline T *begin(void)
{return static_cast<T *>(Vector::begin());};
/**
* Get the last typed object pointer contained in the vector.
* @return last typed object pointer.
*/
inline T *end(void)
{return static_cast<T *>(Vector::end());};
/**
* Concatenate typed vector in an expression.
* @param vector to concatenate.
* @return effective object to continue in expression.
*/
inline Vector &operator+(Vector &vector)
{Vector::add(vector); return static_cast<Vector &>(*this);};
};
/**
* An array of reusable types. A pool of typed objects is created which can
* be allocated as needed. Deallocated typed objects are returned to the pool
* so they can be reallocated later. This is a private fixed size heap.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template<class T>
class array_reuse : protected ArrayReuse
{
public:
/**
* Create private heap of reusable objects of specified type.
* @param count of objects of specified type to allocate.
*/
inline array_reuse(unsigned count) :
ArrayReuse(sizeof(T), count) {};
/**
* Create reusable objects of specific type in preallocated memory.
* @param count of objects of specified type in memory.
* @param memory to use.
*/
inline array_reuse(unsigned count, void *memory) :
ArrayReuse(sizeof(T), count, memory) {};
/**
* Test if typed objects available in heap or re-use list.
* @return true if objects still are available.
*/
inline operator bool() const
{return avail();};
/**
* Test if the entire heap has been allocated.
* @return true if no objects are available.
*/
inline bool operator!() const
{return !avail();};
/**
* Request immediately next available typed object from the heap.
* @return typed object pointer or NULL if heap is empty.
*/
inline T* request(void)
{return static_cast<T*>(ArrayReuse::request());};
/**
* Get a typed object from the heap. This function blocks when the
* heap is empty until an object is returned to the heap.
* @return typed object pointer from heap.
*/
inline T* get(void)
{return static_cast<T*>(ArrayReuse::get());};
/**
* Create a typed object from the heap. This function blocks when the
* heap is empty until an object is returned to the heap.
* @return typed object pointer from heap.
*/
inline T* create(void)
{return init<T>(static_cast<T*>(ArrayReuse::get()));};
/**
* Get a typed object from the heap. This function blocks until the
* the heap has an object to return or the timer has expired.
* @param timeout to wait for heap in milliseconds.
* @return typed object pointer from heap or NULL if timeout.
*/
inline T* get(timeout_t timeout)
{return static_cast<T*>(ArrayReuse::get(timeout));};
/**
* Create a typed object from the heap. This function blocks until the
* the heap has an object to return or the timer has expired.
* @param timeout to wait for heap in milliseconds.
* @return typed object pointer from heap or NULL if timeout.
*/
inline T* create(timeout_t timeout)
{return init<T>(static_cast<T*>(ArrayReuse::get(timeout)));};
/**
* Release (return) a typed object back to the heap for re-use.
* @param object to return.
*/
inline void release(T *object)
{ArrayReuse::release(object);};
/**
* Get a typed object from the heap by type casting reference. This
* function blocks while the heap is empty.
* @return typed object pointer from heap.
*/
inline operator T*()
{return array_reuse::get();};
/**
* Get a typed object from the heap by pointer reference. This
* function blocks while the heap is empty.
* @return typed object pointer from heap.
*/
inline T *operator*()
{return array_reuse::get();};
};
/**
* A reusable private pool of reusable types. A pool of typed objects is
* created which can be allocated from a memory pager. Deallocated typed
* objects are also returned to this pool so they can be reallocated later.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class paged_reuse : protected PagerReuse
{
public:
/**
* Create a managed reusable typed object pool. This manages a heap of
* typed objects that can either be reused from released objects or
* allocate from an existing memory pager pool.
* @param pager pool to allocate from.
* @param count of objects of specified type to allocate.
*/
inline paged_reuse(mempager *pager, unsigned count) :
PagerReuse(pager, sizeof(T), count) {};
/**
* Test if typed objects available from the pager or re-use list.
* @return true if objects still are available.
*/
inline operator bool() const
{return PagerReuse::avail();};
/**
* Test if no objects are available for reuse or the pager.
* @return true if no objects are available.
*/
inline bool operator!() const
{return !PagerReuse::avail();};
/**
* Get a typed object from the pager heap. This function blocks when the
* heap is empty until an object is returned to the heap.
* @return typed object pointer from heap.
*/
inline T *get(void)
{return static_cast<T*>(PagerReuse::get());};
/**
* Get a typed object from the pager heap. This function blocks when the
* heap is empty until an object is returned to the heap. The objects
* default constructor is used.
* @return typed object pointer from heap.
*/
inline T *create(void)
{return init<T>(static_cast<T*>(PagerReuse::get()));};
/**
* Get a typed object from the heap. This function blocks until the
* the heap has an object to return or the timer has expired.
* @param timeout to wait for heap in milliseconds.
* @return typed object pointer from heap or NULL if timeout.
*/
inline T *get(timeout_t timeout)
{return static_cast<T*>(PagerReuse::get(timeout));};
/**
* Create a typed object from the heap. This function blocks until the
* the heap has an object to return or the timer has expired. The
* objects default constructor is used.
* @param timeout to wait for heap in milliseconds.
* @return typed object pointer from heap or NULL if timeout.
*/
inline T *create(timeout_t timeout)
{return init<T>(static_cast<T*>(PagerReuse::get(timeout)));};
/**
* Request immediately next available typed object from the pager heap.
* @return typed object pointer or NULL if heap is empty.
*/
inline T *request(void)
{return static_cast<T*>(PagerReuse::request());};
/**
* Release (return) a typed object back to the pager heap for re-use.
* @param object to return.
*/
inline void release(T *object)
{PagerReuse::release(object);};
/**
* Get a typed object from the pager heap by type casting reference. This
* function blocks while the heap is empty.
* @return typed object pointer from heap.
*/
inline T *operator*()
{return paged_reuse::get();};
/**
* Get a typed object from the pager heap by pointer reference. This
* function blocks while the heap is empty.
* @return typed object pointer from heap.
*/
inline operator T*()
{return paged_reuse::get();};
};
/**
* Allocated vector list of a specified type. This analogous to the stringbuf
* class and allows one to create a vector with it's member list as a single
* object that can live in the heap or that can be created at once and used as
* a auto variable.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template<typename T, vectorsize_t S>
class vectorbuf : public MemVector
{
private:
char buffer[sizeof(array) + (S * sizeof(void *))];
public:
/**
* Construct fixed sized vector object in heap or stack.
*/
inline vectorbuf() : MemVector(buffer, S) {};
/**
* Get object pointer of specified type from fixed vector.
* @param index of typed member to return, < 0 to use from end of list.
* @return typed object pointer of member.
*/
inline const T& at(int index)
{return static_cast<const T&>(Vector::get(index));};
inline T& operator[](int index)
{return static_cast<T&>(Vector::get(index));};
/**
* Retrieve a typed member of the fixed vector directly.
* @param position to retrieve object from.
* @return typed object pointer retrieved from vector.
*/
inline T *operator()(vectorsize_t position)
{return static_cast<T *>(Vector::get(position));};
/**
* Get the first typed object pointer contained in the fixed vector.
* @return first typed object pointer.
*/
inline T *begin(void)
{return static_cast<T *>(Vector::begin());};
/**
* Get the last typed object pointer contained in the fixed vector.
* @return last typed object pointer.
*/
inline T *end(void)
{return static_cast<T *>(Vector::end());};
/**
* Concatenate fixed typed vector in an expression.
* @param vector to concatenate.
* @return effective object to continue in expression.
*/
inline Vector &operator+(Vector &vector)
{Vector::add(vector); return static_cast<Vector &>(*this);};
};
END_NAMESPACE
#endif
|