This file is indexed.

/usr/include/visp/vpBSpline.h is in libvisp-dev 2.8.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/****************************************************************************
 *
 * $Id: vpBSpline.h 4056 2013-01-05 13:04:42Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * This class implements the B-Spline
 *
 * Authors:
 * Nicolas Melchior
 * 
 *****************************************************************************/

#ifndef vpBSpline_H
#define vpBSpline_H

/*!
  \file vpBSpline.h
  \brief Class that provides tools to compute and manipulate a B-Spline curve.
*/

#include <visp/vpImagePoint.h>

#include <vector>
#include <list>

#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
#  include <visp/vpList.h>
#endif
#include <visp/vpMatrix.h>

#ifndef DOXYGEN_SHOULD_SKIP_THIS

/*!
  Structure that defines a B-Spline basis function \f$ N_{i,p}^k(u) \f$.
  
  - i is the number of the knot interval in which the basis function is computed.
  - p is the degree of the B-Spline basis function.
  - u is the "point" point of the curve where the basis function is computed.
  - k indicates which kth derivative is computed.
  - value is the numerical value of \f$ N_{i,p}^k(u) \f$.
*/
typedef struct vpBasisFunction{
  unsigned int i;
  unsigned int p;
  double u;
  unsigned int k;
  double value;
} vpBasisFunction;
#endif

/*!
  \class vpBSpline
  \ingroup MathTools


  \brief Class that provides tools to compute and manipulate a B-Spline curve.

  The different parameters are :

  - The knot vector \f$ U = {u_0, ... , u_m} \f$ where the knots \f$ u_i, i = 0, ...,m \f$ are real number such as \f$ u_i < u_{i+1}, i = 0, ...,m \f$.
    To define a curve, the knot vector is such as : \f$ U = {a , ... , a, u_{p+1} , ... , u_{m-p-1} , b , ... , b} \f$ where \f$ a \f$ and \f$ b \f$ are real numbers and p is the degree of the B-Spline basis functions.

  - The B-Spline basis functions \f$ N_{i,p} \f$ defined as :
  \f[ N_{i,0}(u) = \left\{\begin{array}{cc}
  1 & \mbox{if } u_i \leq u \leq u_{i+1} \\ 0 & else
  \end{array}\right.\f]

  \f[ N_{i,p}(u) = \frac{u-u_i}{u_{i+p}-u_i}N_{i,p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)\f]
  
  where \f$ i = 0 , ... , m-1 \f$ and p is the degree of the B-Spline basis functions.

  - The control points \f$ {P_i} \f$ which are defined by the coordinates \f$ (i,j) \f$ of a point in an image.

  It is possible to compute the coordinates of a point corresponding to the knots \f$ u \f$ (\f$ u \in [u_0,u_m]\f$) thanks to the formula :
  \f[ C(u) = \sum_{i=0}^n (N_{i,p}(u)P_i)\f]

  You can find much more information about the B-Splines and the implementation of all the methods in the Nurbs Book. 
*/

class VISP_EXPORT vpBSpline
{
  public/*protected*/:
    //!Vector wich contains the control points 
    std::vector<vpImagePoint> controlPoints;
    //! Vector which contain the knots \f$ {u0, ..., um} \f$
    std::vector<double> knots;
    //! Degree of the B-Spline basis functions.
    unsigned int p;
    //! Vector wich contains the points used during the interpolation method.
    std::vector<vpImagePoint> crossingPoints;  

  public:

    vpBSpline();
    vpBSpline(const vpBSpline &bspline);
    virtual ~vpBSpline();
    
	/*!
	  Gets the degree of the B-Spline.
	  
	  \return the degree of the B-Spline.
	*/
	inline unsigned int get_p() const {return p;}

  /*!
    Gets all the control points.

    \param list : A std::list containing the coordinates of the control points.
  */
  inline void get_controlPoints(std::list<vpImagePoint> &list) const {
    list.clear();
    for (unsigned int i = 0; i < controlPoints.size(); i++)
      list.push_back(*(&(controlPoints[0])+i));
    }

  /*!
    Gets all the knots.

    \param list : A std::list containing the value of the knots.
  */
  inline void get_knots(std::list<double> &list) const {
    list.clear();
    for (unsigned int i = 0; i < knots.size(); i++)
      list.push_back(*(&(knots[0])+i));
    }

  /*!
    Gets all the crossing points (used in the interpolation method)

    \param list : A std::list containing the coordinates of the crossing points.
  */
  inline void get_crossingPoints(std::list<vpImagePoint> &list) const {
    list.clear();
    for (unsigned int i = 0; i < crossingPoints.size(); i++)
      list.push_back(*(&(crossingPoints[0])+i));
    }

	  
	/*!
	  Sets the degree of the B-Spline.
	  
	  \param p : the degree of the B-Spline.
	*/
	inline void set_p(unsigned int p) {this->p = p;}


  /*!
    Sets all the control points.

    \param list : A std::list containing the coordinates of the control points
  */
  inline void set_controlPoints(const std::list<vpImagePoint> &list) {
    controlPoints.clear();
    for(std::list<vpImagePoint>::const_iterator it = list.begin(); it!=list.end(); ++it){
      controlPoints.push_back(*it);
    }
  }

  /*!
    Sets all the knots.

    \param list : A std::list containing the value of the knots.
  */
  inline void set_knots(const std::list<double> &list) {
    knots.clear();
    for(std::list<double>::const_iterator it = list.begin(); it!=list.end(); ++it){
      knots.push_back(*it);
    }
  }

  /*!
    Sets all the crossing points (used in the interpolation method)

    \param list : A std::list containing the coordinates of the crossing points
  */
  inline void set_crossingPoints(const std::list<vpImagePoint> &list) {
    crossingPoints.clear();
    for(std::list<vpImagePoint>::const_iterator it=list.begin(); it!=list.end(); ++it){
      crossingPoints.push_back(*it);
    }
  }

    static unsigned int findSpan(double l_u, unsigned int l_p, std::vector<double> &l_knots);
    unsigned int findSpan(double u);

    static vpBasisFunction* computeBasisFuns(double l_u, unsigned int l_i, unsigned int l_p, std::vector<double> &l_knots);
    vpBasisFunction* computeBasisFuns(double u);

    static vpBasisFunction** computeDersBasisFuns(double l_u, unsigned int l_i, unsigned int l_p, unsigned int l_der, std::vector<double> &l_knots);
    vpBasisFunction** computeDersBasisFuns(double u, unsigned int der);

    static vpImagePoint computeCurvePoint(double l_u, unsigned int l_i, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints);
    vpImagePoint computeCurvePoint(double u);

    static vpImagePoint* computeCurveDers(double l_u, unsigned int l_i, unsigned int l_p, unsigned int l_der, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints);
    vpImagePoint* computeCurveDers(double u, unsigned int der);

#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
  /*!
    @name Deprecated functions
  */
  /*!
    \deprecated This method is deprecated. You should use get_controlPoints(std::list<vpImagePoint> &) const instead. \n \n
    Gets all the control points.

    \return list : A vpList containing the coordinates of the control points
  */
   vp_deprecated vpList<vpImagePoint> get_controlPoints() const {
    vpList<vpImagePoint> list;
    for (unsigned int i = 0; i < controlPoints.size(); i++) list.addRight(*(&(controlPoints[0])+i));
    return list; }

  /*!
    \deprecated This method is deprecated. You should use get_knots(std::list<double> &) const instead. \n \n
    Gets all the knots.

    \return list : A vpList containing the value of the knots.
  */
  vp_deprecated inline vpList<double> get_knots() const {
    vpList<double> list;
    for (unsigned int i = 0; i < knots.size(); i++) list.addRight(*(&(knots[0])+i));
    return list; }

  /*!
    \deprecated This method is deprecated. You should use get_crossingPoints(std::list<vpImagePoint> &) const instead. \n \n
    Gets all the crossing points (used in the interpolation method)

    \return list : A vpList containing the coordinates of the crossing points
  */
  vp_deprecated inline vpList<vpImagePoint> get_crossingPoints() const {
    vpList<vpImagePoint> list;
    for (unsigned int i = 0; i < crossingPoints.size(); i++) list.addRight(*(&(crossingPoints[0])+i));
    return list; }

  /*!
    \deprecated This method is deprecated. You should use set_controlPoints(const std::list<vpImagePoint> &) instead. \n \n
    Sets all the control points.

    \param list : A vpList containing the coordinates of the control points
  */
  vp_deprecated inline void set_controlPoints(vpList<vpImagePoint> &list) {
    controlPoints.clear();
    list.front();
    for (unsigned int i = 0; i < list.nbElements(); i++)
    {
      controlPoints.push_back(list.value());
    list.next();
    }
  }

  /*!
    \deprecated This method is deprecated. You should use set_knots(const std::list<double> &) instead. \n \n
    Sets all the knots.

    \param list : A vpList containing the value of the knots.
  */
  vp_deprecated inline void set_knots(vpList<double> &list) {
    knots.clear();
    list.front();
    for (unsigned int i = 0; i < list.nbElements(); i++)
    {
      knots.push_back(list.value());
    list.next();
    }
  }

 /*!
    \deprecated This method is deprecated. You should use set_crossingPoints(const std::list<vpImagePoint> &) instead. \n \n
    Sets all the crossing points (used in the interpolation method)

    \param list : A vpList containing the coordinates of the crossing points
  */
  vp_deprecated inline void set_crossingPoints(vpList<vpImagePoint> &list) {
    crossingPoints.clear();
    list.front();
    for (unsigned int i = 0; i < list.nbElements(); i++)
    {
      crossingPoints.push_back(list.value());
    list.next();
    }
  }
#endif

};

#endif