/usr/include/visp/vpFeaturePointPolar.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | /****************************************************************************
*
* $Id: vpFeaturePointPolar.h 4276 2013-06-25 12:36:48Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* 2D point with polar coordinates visual feature.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#ifndef vpFeaturePointPolar_H
#define vpFeaturePointPolar_H
/*!
\file vpFeaturePointPolar.h
\brief Class that defines a 2D point visual feature with polar coordinates.
*/
#include <visp/vpMatrix.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpPoint.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpRGBa.h>
/*!
\class vpFeaturePointPolar
\ingroup VsFeature2
\brief Class that defines 2D image point visual feature with
polar coordinates \f$(\rho,\theta)\f$ described in \cite Corke09a.
Let us denote \f$(\rho,\theta)\f$ the polar coordinates of an image
point, with \f$\rho\f$ the radius of the feature point with respect
to the optical center and \f$\theta\f$ the angle. From cartesian
coordinates \f$(x,y)\f$ of a image point, polar coordinates are
obtained by:
\f[\rho = \sqrt{x^2+y^2} \hbox{,}\; \; \theta = \arctan \frac{y}{x}\f]
From polar coordinates, cartesian coordinates of the feature point
can be obtained by:
\f[x = \rho \cos\theta \hbox{,}\; \; y = \rho \sin\theta\f]
This class is intended to manipulate the 2D image point visual
feature in polar coordinates \f$ s = (\rho, \theta) \f$. The
interaction matrix related to \f$ s \f$ is given by:
\f[
L = \left[
\begin{array}{l}
L_{\rho} \\
\; \\
L_{\theta}\\
\end{array}
\right]
=
\left[
\begin{array}{cccccc}
\frac{-\cos \theta}{Z} & \frac{-\sin \theta}{Z} & \frac{\rho}{Z} & (1+\rho^2)\sin\theta & -(1+\rho^2)\cos\theta & 0 \\
\;\\ \
\frac{\sin\theta}{\rho Z} & \frac{-\cos\theta}{\rho Z} & 0 & \cos\theta /\rho & \sin\theta/\rho & -1 \\
\end{array}
\right]
\f]
where \f$Z\f$ is the 3D depth of the considered point in the camera frame.
Two ways are allowed to initialize the feature.
- The first way by setting the feature values \f$(\rho,\theta,Z)\f$
using vpFeaturePointPolar members like set_rho(), set_theta(),
set_Z(), or set_rhoThetaZ(), or also buildFrom().
- The second way by using the feature builder functionalities to
initialize the feature from a dot tracker, like
vpFeatureBuilder::create (vpFeaturePointPolar &, const
vpCameraParameters &, const vpDot &) or vpFeatureBuilder::create
(vpFeaturePointPolar &, const vpCameraParameters &, const vpDot2
&). Be aware, that in that case only \f$(\rho,\theta)\f$ are
initialized. You may also initialize the 3D depth \f$Z\f$. It is
also possible to initialize the feature from a point structure,
like vpFeatureBuilder::create(vpFeaturePointPolar &, const vpPoint
&) or vpFeatureBuilder::create(vpFeaturePointPolar &, const
vpCameraParameters &, const vpCameraParameters &, const vpPoint
&). In that case all the feature parameters \f$(\rho,\theta,Z)\f$
would be initialized.
The interaction() method allows to compute the interaction matrix
\f$L\f$ associated to the visual feature, while the error() method
computes the error vector \f$(s - s^*)\f$ between the current visual
feature and the desired one.
The code below shows how to create a eye-in hand visual servoing
task using four 2D point features with polar coordinates. First we
create four current features \f$s\f$ (p var name in the code) and
four desired \f$s^*\f$ (pd var name in the code) point features with
polar coordinates, set the task to use the interaction matrix
associated to the current feature \f$L_{s}\f$ and than compute the
camera velocity \f$v=-\lambda \; {L_{s}}^+ \; (s-s^*)\f$. The
current feature \f$s\f$ is updated in the while() loop, while
\f$s^*\f$ is initialized at the beginning.
\code
#include <visp/vpPoint.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpFeaturePointPolar.h>
#include <visp/vpServo.h>
int main()
{
// Create 4 points to specify the object of interest
vpPoint point[4];
// Set the 3D point coordinates in the object frame: oP
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates( 0.1, -0.1, 0);
point[2].setWorldCoordinates( 0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
// Initialize the desired pose between the camera and the object frame
vpHomogeneousMatrix cMod;
cMod.buildFrom(0, 0, 1, 0, 0, 0);
// Compute the desired position of the point
for (int i = 0 ; i < 4 ; i++) {
// Compute the 3D point coordinates in the camera frame cP = cMod * oP
point[i].changeFrame(cMod);
// Compute the perspective projection to set (x,y)
point[i].projection();
}
// Create 4 desired visual features as 2D points with polar coordinates
vpFeaturePointPolar pd[4];
// Initialize the desired visual feature from the desired point positions
for (int i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(pd[i], point[i]);
// Initialize the current pose between the camera and the object frame
vpHomogeneousMatrix cMo;
cMo.buildFrom(0, 0, 1.2, 0, 0, M_PI);
// ... cMo need here to be computed from a pose estimation
for (int i = 0 ; i < 4 ; i++) {
// Compute the 3D point coordinates in the camera frame cP = cMo * oP
point[i].changeFrame(cMo);
// Compute the perspective projection to set (x,y)
point[i].projection();
}
// Create 4 current visual features as 2D points with polar coordinates
vpFeaturePointPolar p[4];
// Initialize the current visual feature from the current point positions
for (int i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(p[i], point[i]);
// Visual servo task initialization
vpServo task;
// - Camera is monted on the robot end-effector and velocities are
// computed in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// - Interaction matrix is computed with the current visual features s
task.setInteractionMatrixType(vpServo::CURRENT);
// - Set the contant gain to 1
task.setLambda(1);
// - Add current and desired features
for (int i = 0 ; i < 4 ; i++)
task.addFeature(p[i], pd[i]);
// Control loop
for ( ; ; ) {
// ... cMo need here to be estimated from for example a pose estimation.
// Computes the point coordinates in the camera frame and its 2D
// coordinates in the image plane
for (int i = 0 ; i < 4 ; i++)
point[i].track(cMo) ;
// Update the current 2D point visual feature with polar coordinates
for (int i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(p[i], point[i]);
// compute the control law
vpColVector v = task.computeControlLaw(); // camera velocity
}
task.kill();
}
\endcode
If you want to deal only with the \f$\rho\f$ subset feature from the 2D
point feature set, you have just to modify the addFeature() call in the
previous example by the following line. In that case, the dimension of
\f$s\f$ is four.
\code
// Add the rho subset feature from the 2D point polar coordinates visual features
task.addFeature(p[i], pd[i], vpFeaturePointPolar::selectRho());
\endcode
If you want to build your own control law, this other example shows how
to create a current (\f$s\f$) and desired (\f$s^*\f$) 2D point visual
feature with polar coordinates, compute the corresponding error vector
\f$(s-s^*)\f$ and finally build the interaction matrix \f$L_s\f$.
\code
#include <visp/vpFeaturePointPolar.h>
#include <visp/vpMatrix.h>
int main()
{
// Creation of the current feature s
vpFeaturePointPolar s;
// Initialize the current feature
s.buildFrom(0.1, M_PI, 1); // rho=0.1m, theta=pi, Z=1m
// Creation of the desired feature s
vpFeaturePointPolar s_star;
// Initialize the desired feature
s.buildFrom(0.15, 0, 0.8); // rho=0.15m, theta=0, Z=0.8m
// Compute the interaction matrix L_s for the current feature
vpMatrix L = s.interaction();
// Compute the error vector (s-s*) for the point feature with polar coordinates
s.error(s_star);
return 0;
}
\endcode
*/
class VISP_EXPORT vpFeaturePointPolar : public vpBasicFeature
{
private:
//! FeaturePoint depth (required to compute the interaction matrix)
//! default Z = 1m
double Z ;
public:
// basic construction
void init() ;
// basic constructor
vpFeaturePointPolar() ;
//! Destructor. Does nothing.
virtual ~vpFeaturePointPolar() { if (flags != NULL) delete [] flags; }
void buildFrom(const double rho, const double theta, const double Z) ;
/*
Set coordinates
*/
// set the point rho-coordinates
void set_rho(const double rho) ;
// set the point theta-coordinates
void set_theta(const double theta) ;
// set the point depth (camera frame)
void set_Z(const double Z) ;
// set the point rho, theta polar coordinates and Z coordinate
void set_rhoThetaZ(const double rho, const double theta, const double Z) ;
// get the point rho-coordinates
double get_rho() const ;
// get the point theta-coordinates
double get_theta() const ;
// get the point depth (camera frame)
double get_Z() const ;
/*
vpBasicFeature method instantiation
*/
/*!
Function used to select the \f$\rho\f$ subset polar
coordinate of the image point visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$\rho\f$ feature.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
\code
vpFeaturePointPolar p;
vpServo task;
...
// Add only the rho subset coordinate feature from an image point to the task
task.addFeature(p, vpFeaturePointPolar::selectRho());
\endcode
\sa selectTheta()
*/
inline static unsigned int selectRho() { return FEATURE_LINE[0] ; }
/*!
Function used to select the \f$\theta\f$ subset polar
coordinate of the image point visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$\theta\f$ feature.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
\code
vpFeaturePointPolar p;
vpServo task;
...
// Add only the theta subset coordinate feature from an image point to the task
task.addFeature(p, vpFeaturePointPolar::selectTheta());
\endcode
\sa selectRho()
*/
inline static unsigned int selectTheta() { return FEATURE_LINE[1] ; }
// compute the interaction matrix from a subset a the possible features
vpMatrix interaction(const unsigned int select = FEATURE_ALL);
// compute the error between two visual features from a subset
// a the possible features
vpColVector error(const vpBasicFeature &s_star,
const unsigned int select = FEATURE_ALL) ;
// print the name of the feature
void print(const unsigned int select = FEATURE_ALL ) const ;
// feature duplication
vpFeaturePointPolar *duplicate() const ;
void display(const vpCameraParameters &cam,
const vpImage<unsigned char> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
void display(const vpCameraParameters &cam,
const vpImage<vpRGBa> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
/*!
@name Deprecated functions
*/
//! compute the error between a visual features and zero
vpColVector error(const unsigned int select = FEATURE_ALL) ;
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|