This file is indexed.

/usr/include/visp/vpFeatureSegment.h is in libvisp-dev 2.8.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/****************************************************************************
 *
 * $Id: vpFeatureThetaU.h 3530 2012-01-03 10:52:12Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Segment visual feature.
 *
 * Authors:
 * Filip Novotny
 * Fabien Spindler
 *
 *****************************************************************************/


#ifndef vpFeatureSegment_H
#define vpFeatureSegment_H

/*!
  \file vpFeatureSegment.h
  \brief class that defines the Segment visual feature
*/

#include <visp/vpMatrix.h>
#include <visp/vpPoint.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpRGBa.h>
#include <visp/vpFeatureException.h>

/*!
  \class vpFeatureSegment
  \ingroup VsFeature2

  \brief Class that defines a 2D segment visual features.
  This class allow to consider two sets of visual features:
  - the non normalised features \f${\bf s} = (x_c, y_c, l, \alpha)\f$ where \f$(x_c,y_c)\f$
    are the coordinates of the segment center, \f$ l \f$ the segment length
    and \f$ \alpha \f$ the orientation of the segment with respect to the \f$ x \f$ axis.
  - or the normalized features \f${\bf s} = (x_n, y_n, l_n, \alpha)\f$ with \f$x_n = x_c/l\f$,
    \f$y_n = y_c/l\f$ and \f$l_n = 1/l\f$.



  The selection of the feature set is done either during construction using vpFeatureSegment(bool),
  or by setNormalized(bool).

*/
class VISP_EXPORT vpFeatureSegment : public vpBasicFeature
{
public:
  //empty constructor
  vpFeatureSegment(bool normalized=false);

  //! Destructor. Does nothing.
  ~vpFeatureSegment() { if (flags != NULL) delete [] flags; }
  // change values of the segment
  void buildFrom(const double x1, const double y1, const double Z1, const double x2, const double y2, const double Z2);

  void display(const vpCameraParameters &cam,
               const vpImage<unsigned char> &I,
               const vpColor &color=vpColor::green,
               unsigned int thickness=1) const ;
  void display(const vpCameraParameters &cam,
               const vpImage<vpRGBa> &I,
               const vpColor &color=vpColor::green,
               unsigned int thickness=1) const ;
  //! Feature duplication.
  vpFeatureSegment *duplicate() const ;
  // compute the error between two visual features from a subset
  // a the possible features
  vpColVector error(const vpBasicFeature &s_star,
                    const unsigned int select = FEATURE_ALL)  ;

  /*!
      Get the x coordinate of the segment center in the image plane.

      \return If normalized features are used, return \f$ x_n = x_c / l \f$. Otherwise return \f$ x_c \f$.
   */
  inline double getXc() const { return s[0] ; }

  /*!
      Get the y coordinate of the segment center in the image plane.

      \return If normalized features are used, return \f$ y_n = y_c / l \f$. Otherwise return \f$ y_c \f$.
    */
  inline double getYc() const { return s[1] ; }

  /*!
      Get the length of the segment.

      \return If normalized features are used, return \f$ l_n = 1 / l \f$. Otherwise return \f$ l \f$.

    */
  inline double getL() const { return s[2] ; }

  /*!
        Get the value of \f$ \alpha \f$ which represents the orientation of the segment.

        \return The value of \f$ \alpha \f$.
    */
  inline double getAlpha() const { return s[3] ;}

  /*!
      Get the value of \f$ Z_1 \f$ which represents the Z coordinate in the camera frame
      of the 3D point that corresponds to the segment first point.

      \return The value of the depth \f$ Z_1 \f$.
    */
  inline double getZ1() const { return Z1_ ;}

  /*!
      Get the value of \f$ Z_2 \f$ which represents the Z coordinate in the camera frame
      of the 3D point that corresponds to the segment second point.

      \return The value of the depth \f$ Z_2 \f$.
    */
  inline double getZ2() const { return Z2_ ;}

  // Basic construction.
  void init() ;

  // compute the interaction matrix from a subset a the possible features
  vpMatrix  interaction(const unsigned int select = FEATURE_ALL);

  void print(const unsigned int select= FEATURE_ALL) const ;

  /*!
    Indicates if the normalized features are considered.
    */
  bool isNormalized() { return normalized_; };

  /*!

    Function used to select the \f$x_c\f$ or \f$x_n\f$ subfeature.

    This function is to use in conjunction with interaction() in order
    to compute the interaction matrix associated to \f$x_c\f$ or \f$x_n\f$ feature.

    See the interaction() method for an usage example.

    This function is also useful in the vpServo class to indicate that
    a subset of the visual feature is to use in the control law:

    \code
  vpFeatureSegment s, s_star; // Current and desired visual feature
  vpServo task;
  ...
  // Add only the xc subset feature from a segment to the task
  task.addFeature(s, s_star, vpFeatureSegment::selectXc());
    \endcode

    \sa selectYc(), selectL(), selectAlpha()
  */
  inline static unsigned int selectXc()  { return FEATURE_LINE[0] ; }

  /*!

    Function used to select the \f$y_c\f$ or \f$y_n\f$ subfeature.

    This function is to use in conjunction with interaction() in order
    to compute the interaction matrix associated to \f$y_c\f$ or \f$y_n\f$ feature.

    See the interaction() method for an usage example.

    This function is also useful in the vpServo class to indicate that
    a subset of the visual feature is to use in the control law:

    \code
  vpFeatureSegment s, s_star; // Current and desired visual feature
  vpServo task;
  ...
  // Add only the yc subset feature from a segment to the task
  task.addFeature(s, s_star, vpFeatureSegment::selectYc());
    \endcode

    \sa selectXc(), selectL(), selectAlpha()
  */

  inline static unsigned int selectYc()  { return FEATURE_LINE[1] ; }

  /*!

    Function used to select the \f$l\f$ or \f$l_n\f$ subfeature.

    This function is to use in conjunction with interaction() in order
    to compute the interaction matrix associated to \f$l\f$ or \f$l_n\f$ feature.

    See the interaction() method for an usage example.

    This function is also useful in the vpServo class to indicate that
    a subset of the visual feature is to use in the control law:

    \code
  vpFeatureSegment s, s_star; // Current and desired visual feature
  vpServo task;
  ...
  // Add only the l subset feature from a segment to the task
  task.addFeature(s, s_star, vpFeatureSegment::selectL());
    \endcode

    \sa selectXc(), selectYc(), selectAlpha()
  */

  inline static unsigned int selectL()  { return FEATURE_LINE[2] ; }

  /*!

    Function used to select the \f$\alpha\f$ subfeature.

    This function is to use in conjunction with interaction() in order
    to compute the interaction matrix associated to \f$\alpha\f$ feature.

    See the interaction() method for an usage example.

    This function is also useful in the vpServo class to indicate that
    a subset of the visual feature is to use in the control law:

    \code
  vpFeatureSegment s, s_star; // Current and desired visual feature
  vpServo task;
  ...
  // Add only the alpha subset feature from a segment to the task
  task.addFeature(s, s_star, vpFeatureSegment::selectAlpha());
    \endcode

    \sa selectXc(), selectYc(), selectL()
  */

  inline static unsigned int selectAlpha() { return FEATURE_LINE[3] ; }
  
  /*!
    Set the king of feature to consider.
    \param normalized : If true, use normalized features \f${\bf s} = (x_n, y_n, l_n, \alpha)\f$.
    If false, use non normalized features \f${\bf s} = (x_c, y_c, l_c, \alpha)\f$.
    */
  void setNormalized(bool normalized) { normalized_ = normalized; };
  /*!

    Set the value of the x coordinate of the segment center
    in the image plane.  It is one parameter of the visual feature \f$ s \f$.

    \param val : Value to set, that is either equal to \f$ x_n = x_c/l \f$ when normalized features
    are considered, or equal to \f$ x_c \f$ otherwise.
  */
  inline void setXc(const double val){
    s[0] = xc_ = val;
    flags[0] = true;
  }
  /*!

    Set the value of the y coordinate of the segment center
    in the image plane.  It is one parameter of the visual feature \f$ s \f$.

    \param val : Value to set, that is either equal to \f$ y_n = y_c/l \f$ when normalized features
    are considered, or equal to \f$ y_c \f$ otherwise.
  */
  inline void setYc(const double val){
    s[1] = yc_ = val;
    flags[1] = true;
  }
  /*!

    Set the value of the segment length in the image plane. It is one parameter of the visual feature \f$ s \f$.

    \param val : Value to set, that is either equal to \f$l_n= 1/l \f$ when normalized features
    are considered, or equal to \f$ l \f$ otherwise.
  */
  inline void setL(const double val){
    s[2] = l_ = val;
    flags[2] = true;
  }
  /*!

    Set the value of \f$ \alpha \f$ which represents the orientation of the segment
    in the image plane. It is one parameter of the visual feature \f$ s \f$.

    \param val : \f$ \alpha \f$ value to set.
  */
  inline void setAlpha(const double val){
    s[3] = alpha_ = val;
    cos_a_ = cos(val);
    sin_a_ = sin(val);
    flags[3] = true;
  }

  /*!

    Set the value of \f$ Z_1 \f$ which represents the Z coordinate in the camera frame
    of the 3D point that corresponds to the segment first point.

    This value is requested to compute the interaction matrix.

    \param val : \f$ Z_1 \f$ value to set.

    \exception vpFeatureException::badInitializationError : If Z1 is behind the camera or equal to zero.
  */
  inline void setZ1(const double val)
  {
    Z1_ = val;

    if (Z1_ < 0)
    {
      vpERROR_TRACE("Point is behind the camera ") ;
      std::cout <<"Z1 = " << Z1_ << std::endl ;

      throw(vpFeatureException(vpFeatureException::badInitializationError,
             "Point Z1 is behind the camera ")) ;
    }

    if (fabs(Z1_) < 1e-6)
    {
      vpERROR_TRACE("Point Z1 coordinates is null ") ;
      std::cout <<"Z1 = " << Z1_ << std::endl ;

      throw(vpFeatureException(vpFeatureException::badInitializationError,
             "Point Z1 coordinates is null")) ;
    }

    flags[4] = true;
  }

  /*!

    Set the value of \f$ Z_2 \f$ which represents the Z coordinate in the camera frame
    of the 3D point that corresponds to the segment second point.

    This value is requested to compute the interaction matrix.

    \param val : \f$ Z_2 \f$ value to set.

    \exception vpFeatureException::badInitializationError : If Z2 is behind the camera or equal to zero.
  */
  inline void setZ2(const double val)
  {
    Z2_ = val;

    if (Z2_ < 0)
    {
      vpERROR_TRACE("Point Z2 is behind the camera ") ;
      std::cout <<"Z2 = " << Z2_ << std::endl ;

      throw(vpFeatureException(vpFeatureException::badInitializationError,
             "Point Z2 is behind the camera ")) ;
    }

    if (fabs(Z2_) < 1e-6)
    {
      vpERROR_TRACE("Point Z2 coordinates is null ") ;
      std::cout <<"Z2 = " << Z2_ << std::endl ;

      throw(vpFeatureException(vpFeatureException::badInitializationError,
             "Point Z2 coordinates is null")) ;
    }

    flags[5] = true;
  }


private:
  double xc_;
  double yc_;
  double l_;
  double alpha_;
  double Z1_;
  double Z2_;
  double cos_a_;
  double sin_a_;
  bool normalized_;
} ;

#endif