/usr/include/visp/vpFernClassifier.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | /****************************************************************************
*
* $Id: vpFernClassifier.h 4201 2013-04-08 08:20:47Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Class that implements the Fern classifier and the YAPE detector thanks
* to the OpenCV library.
*
* Authors:
* Romain Tallonneau
*
*****************************************************************************/
#ifndef vpFernClassifier_H
#define vpFernClassifier_H
#include <visp/vpConfig.h>
#include <string>
#if (VISP_HAVE_OPENCV_VERSION >= 0x020000) // Require opencv >= 2.0.0
#if (VISP_HAVE_OPENCV_VERSION >= 0x020101) // Require opencv >= 2.1.1
# include <opencv2/imgproc/imgproc.hpp>
# include <opencv2/features2d/features2d.hpp>
# include <opencv2/legacy/legacy.hpp>
#elif (VISP_HAVE_OPENCV_VERSION >= 0x020000) // Require opencv >= 2.0.0
# include <cv.h>
# include <cvaux.hpp>
#endif
#include <visp/vpBasicKeyPoint.h>
/*!
\class vpFernClassifier
\brief Class that implements the Fern classifier and the YAPE detector thanks
to the OpenCV library.
This class provides a way to detect and match point using the YAPE and
a Fern Classifiers, thanks to the OpenCV library (version >= 2.0)
This class provides a tool to match points between a model and the current
image. The points of interests belonging to the model and the points detected
in the current image are given in pixels thanks to the vpImagePoint class.
For more details about the Ferns Classifier and the point detector, see
- Mustafa Özuysal, Michael Calonder, Vincent Lepetit, Pascal Fua, "Fast
KeyPoint Recognition Using Random Ferns", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15 Jan. 2009.
- Vincent Lepetit, Pascal Fua, “Towards Recognizing Feature Points Using
Classification Trees”, Technical Report IC/2004/74, EPFL, 2004.
To use this class, you first have to detect points in the model and train the
associated Fern classifier. Then, for each new grabbed image, You can detect
points and try to match them with the model.
As training can requires up to several minutes, it is possible to save (in a
file) and load the classifier.
The following small example shows how to use the class.
\code
#include <visp/vpConfig.h>
#include <visp/vpImage.h>
#include <visp/vpFernClassifier.h>
#if VISP_HAVE_OPENCV_VERSION >= 0x020000 // Fern classifier only available since OpenCV-2.0.0
int main()
{
vpImage<unsigned char> Ireference;
vpImage<unsigned char> Icurrent;
vpFernClassifier fern;
//First grab the reference image Ireference
//Build the reference points.
fern.buildReference(Ireference);
//Then grab another image which represents the current image Icurrent
//Match points between the reference points and the points detected in the current image.
fern.matchPoint(Icurrent);
//Display the matched points
fern.display(Ireference, Icurrent);
return (0);
}
#else
int main() {}
#endif
\endcode
It is also possible to create the reference thanks to only a part of the
reference image (not the whole image) and find points to match in only a
part of the current image. The small following example shows how to do this.
\code
#include <visp/vpConfig.h>
#include <visp/vpImage.h>
#include <visp/vpDisplay.h>
#include <visp/vpFernClassifier.h>
#if VISP_HAVE_OPENCV_VERSION >= 0x020000 // Fern classifier only available since OpenCV-2.0.0
int main()
{
vpImage<unsigned char> Ireference;
vpImage<unsigned char> Icurrent;
vpFernClassifier fern;
//First grab the reference image Ireference
//Select a part of the image by clicking on two points which define a rectangle
vpImagePoint corners[2];
for (int i=0 ; i < 2 ; i++)
{
vpDisplay::getClick(Ireference, corners[i]);
}
//Build the reference points.
int nbrRef;
unsigned int height, width;
height = (unsigned int)(corners[1].get_i() - corners[0].get_i());
width = (unsigned int)(corners[1].get_j() - corners[0].get_j());
nbrRef = fern.buildReference(Ireference, corners[0], height, width);
//Then grab another image which represents the current image Icurrent
//Select a part of the image by clincking on two points which define a rectangle
for (int i=0 ; i < 2 ; i++)
{
vpDisplay::getClick(Icurrent, corners[i]);
}
//Match points between the reference points and the points detected in the current image.
int nbrMatched;
height = (unsigned int)(corners[1].get_i() - corners[0].get_i());
width = (unsigned int)(corners[1].get_j() - corners[0].get_j());
nbrMatched = fern.matchPoint(Icurrent, corners[0], height, width);
//Display the matched points
fern.display(Ireference, Icurrent);
return(0);
}
#else
int main() {}
#endif
\endcode
*/
class VISP_EXPORT vpFernClassifier: public vpBasicKeyPoint
{
protected:
//! The points of interest detector.
cv::LDetector ldetector;
//! The Fern classifier.
cv::FernClassifier fernClassifier;
//! The patch generator (OpenCV format).
cv::PatchGenerator gen;
//! Flag to indicate whether the classifier has been trained or not.
bool hasLearn;
/* parameters for the key-points detector and the classifier */
//! Threshold to accept or reject points (usually around 20)
int threshold;
//! Number of view to generate for the training
int nbView;
//! Minimal distance between two points
int dist;
//! Number of classifier
int nbClassfier;
//! Size of the classifier
int ClassifierSize;
//! Number of octave for the multi scale
int nbOctave;
//! Size of the patch
int patchSize;
//! Radius for the detector
int radius;
//! Maximal number of points
int nbPoints;
/* parameters for the filter */
//! Flag to specify whether the reference image have to be blurred or not in order to improve the recognition rate
bool blurImage;
//! Radius of the kernel used to blur the image
int radiusBlur;
//! Sigma of the kernel used to blur the image
int sigmaBlur;
//! Number of minimum point below which the homography is not estimated (must be at least four)
unsigned int nbMinPoint;
//! The current image in the OpenCV format.
IplImage* curIplImg;
//! keypoints detected in the reference image.
std::vector<cv::KeyPoint> objKeypoints;
//! the ROI in the reference image.
cv::Rect modelROI_Ref;
//! the ROI for the reference image.
cv::Rect modelROI;
//! the vector containing the points in the model.
std::vector<cv::KeyPoint> modelPoints;
//! the vector containing the points in the current image.
std::vector<cv::KeyPoint> imgKeypoints;
//! vector in the OpenCV format to be used by the detector.
std::vector<cv::Point2f> refPt, curPt;
public:
vpFernClassifier();
vpFernClassifier(const std::string& _dataFile, const std::string& _objectName);
virtual ~vpFernClassifier();
/* build reference */
virtual unsigned int buildReference(const vpImage<unsigned char> &I);
virtual unsigned int buildReference(const vpImage<unsigned char> &I,
const vpImagePoint &iP,
const unsigned int height, const unsigned int width);
virtual unsigned int buildReference(const vpImage<unsigned char> &I,
const vpRect& rectangle);
/* matching */
virtual unsigned int matchPoint(const vpImage<unsigned char> &I);
virtual unsigned int matchPoint(const vpImage<unsigned char> &I,
const vpImagePoint &iP,
const unsigned int height, const unsigned int width);
virtual unsigned int matchPoint(const vpImage<unsigned char> &I,
const vpRect& rectangle);
/* display */
virtual void display(const vpImage<unsigned char> &Iref,
const vpImage<unsigned char> &Icurrent, unsigned int size=3);
virtual void display(const vpImage<unsigned char> &Icurrent, unsigned int size=3,
const vpColor &color=vpColor::green);
/* io methods */
void load(const std::string& _dataFile, const std::string& /*_objectName*/);
void record(const std::string& _objectName, const std::string& _dataFile);
/* accessors */
/*!
The image is blurred before being processed. This solution can lead to a
better recognition rate.
\param _blur : the new option for the blur
*/
inline void setBlurSetting(const bool _blur){ blurImage = _blur;}
inline void setBlurSettings(const bool _blur, int _sigma, int _size);
/*!
Return the blur option.
The Blur option is used to activate a filter used to blur the input image.
The blurring can improve the robustness of the detection.
\return the value of the blur option.
*/
inline bool getBlurSetting(){ return blurImage;}
/*!
Return the blur sigma (for the filter) option.
\return The value of the sigma for the blur filter.
*/
inline int getBlurSigma() { return this->sigmaBlur;}
/*!
return the blur size (for the filter) option
\return the value of the radius for the blur filter
*/
inline int getBlurSize() { return this->radiusBlur;}
/*!
Return a reference on the vector of reference points in the OpenCV format
\return the list of reference points
*/
const std::vector<cv::Point2f>& getRefPt() const {return refPt;}
/*!
Return a reference on the vector of current points in the OpenCV format
\return the list of current points
*/
const std::vector<cv::Point2f>& getCurPt() const {return curPt;}
/*!
Return the region of interest in the OpenCV format
*/
cv::Rect getModelROI() const { return modelROI;}
protected:
void setImage(const vpImage<unsigned char>& _I);
void train();
virtual void init();
};
#endif /* opencv ver > 2.0.0 */
#endif
|