This file is indexed.

/usr/include/visp/vpMath.h is in libvisp-dev 2.8.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/****************************************************************************
 *
 * $Id: vpMath.h 4056 2013-01-05 13:04:42Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Simple mathematical function not available in the C math library (math.h).
 *
 * Authors:
 * Eric Marchand
 *
 *****************************************************************************/

/*!
  \file vpMath.h
  \brief Provides simple Math computation that are not available in
  the C mathematics library (math.h)
*/



#ifndef vpMATH_HH
#define vpMATH_HH

#include <visp/vpConfig.h>

#include <math.h>

#ifdef WIN32	// Not defined in Microsoft math.h

# ifndef M_PI
#   define M_PI            3.14159265358979323846f
# endif

# ifndef M_PI_2
#   define M_PI_2          (M_PI/2.f)
# endif

# ifndef M_PI_4
#   define M_PI_4          (M_PI/4.f)
# endif

#endif


/*!
  \class vpMath
  \ingroup MathTools
  \brief Provides simple mathematics computation tools that are not
  available in the C mathematics library (math.h)

  \author Eric Marchand   (Eric.Marchand@irisa.fr) Irisa / Inria Rennes
*/

class VISP_EXPORT vpMath
{
 public:

  /*!
    Convert an angle in radians into degrees.

    \param rad : Angle in radians.
    \return Angle converted in degrees.
  */
  static inline double deg(double rad) { return (rad*180.0)/M_PI ; }

  /*!
    Convert an angle in degrees into radian.
    \param deg : Angle in degrees.
    \return Angle converted in radian.
  */
  static inline double rad(double deg) { return (deg*M_PI)/180.0 ; }

  /*!
    Compute x square value.
    \return \f$ x^2 \f$.
  */
  static inline double sqr(double x) { return x*x ; }

  //  factorial of x
  static inline double fact(unsigned int x) ;

  // combinaison
  static inline long double comb(unsigned int n, unsigned int p) ;

  //   round x to the nearest integer
  static inline int round(const double x) ;

  //   return the sign of x (+-1)
  static inline int sign(double x) ;


  // test if a number equals 0 (with threshold value)
  static inline bool nul(double x, double s=0.001);

  // test if two numbers are equals (with a user defined threshold)
  static inline bool equal(double x, double y, double s=0.001);

  // test if a number is greater than another (with a user defined threshold)
  static inline bool greater(double x, double y, double s=0.001);


  /*!
    Find the maximum between two numbers (or other).
    \param a : First number.
    \param b : Second number.
    \return The maximum of the two numbers.
  */
  template <class Type> static Type maximum(const Type& a, const Type& b)
  {
    return (a > b) ? a : b;
  }

  /*!
    Find the minimum between two numbers (or other).
    \param a : First number.
    \param b : Second number.
    \return The minimum of the two numbers.
  */
  template <class Type> static Type minimum(const Type& a, const Type& b)
  {
    return (a < b) ? a : b;
  }

  /*!
    Find the absolute value of a number (or other).
    \param x : The number.
    \return The absolute value of x
  */
  template <class Type> static Type abs(const Type& x)
  {
    return (x < 0) ? -x : x;
  }


  // sinus cardinal
  static inline double sinc(double x) ;
  static inline double sinc(double sinx, double x) ;
  static inline double mcosc(double cosx, double x) ;
  static inline double msinc(double sinx, double x) ;

  // sigmoid
  static inline double sigmoid(double x, double x0=0.,double x1=1., double n=12.);

  /*!
    Exchange two numbers.

    \param a First number to exchange.
    \param b Second number to exchange
  */
  template <class Type> static void swap(Type& a, Type& b)
  {
    Type tmp = b;
    b = a;
    a = tmp;
  }

 private:
  static const double ang_min_sinc;
  static const double ang_min_mc;
};



//Begining of the inline functions definition

/*!
  Computes and returns x!
  \param x : parameter of factorial function.
*/
double vpMath::fact(unsigned int x)
{
  if ( (x == 1) || (x == 0)) return 1;
  return x * fact(x-1);
}

/*!
  Computes the number of combination of p elements inside n elements.

  \param n : total number of elements.
  \param p : requested number of elements.

  \return \f$ n! / ((n-p)! p!) \f$
*/
long double vpMath::comb(unsigned int n, unsigned int p)
{
  if (n == p) return 1;
  return fact(n)/ (fact(n-p) * fact(p));
}


/*!
  Round x to the nearest integer.

  \param x : Value to round.

  \return Nearest integer of x.

*/
int vpMath::round(const double x)
{
  if (sign(x) > 0)
    {
      if ((x-(int)x) <= 0.5) return (int)x ;
      else return (int)x+1 ;
    }
  else
    {
      if (fabs(x-(int)x) <= 0.5) return (int)x ;
      else return (int)x-1 ;
    }
}

/*!
  Return the sign of x.

  \return -1 if x is negative, +1 if positive.

*/
int vpMath::sign(double x)
{
  if (fabs(x) < 1e-15) return 0 ;else
    {
      if (x<0) return -1 ; else return 1 ;
    }
}

/*!
  Compares  \f$ | x | \f$ to \f$ s \f$.
  \param x : Value to test.
  \param s : Tolerance threshold
  \return true if \f$ | x | < s \f$.

*/
bool vpMath::nul(double x, double s)
{
  return(fabs(x)<s);
}

/*!
  Compares  \f$ | x - y | \f$ to \f$ s \f$.
  \param x : x value.
  \param y : y value.
  \param s : Tolerance threshold.
  \return true if \f$ | x - y | < s \f$.
*/
bool vpMath::equal(double x, double y, double s)
{
  return( nul(x-y, s) );
}

/*!
  Compares  \f$ x \f$ to \f$ y - s \f$.
  \param x : x value.
  \param y : y value.
  \param s : Tolerance threshold.
  \return true if \f$ x > y - s \f$.
*/
bool vpMath::greater(double x, double y, double s)
{
  return(x>(y-s));
}

/*!

  Compute sinus cardinal \f$ \frac{sin(x)}{x} \f$.

  \param x : Value of x.

  \return Sinus cardinal.

*/
double vpMath::sinc(double x)
{
  if (fabs(x) < ang_min_sinc) return 1.0 ;
  else  return sin(x)/x ;
}
/*!

  Compute sinus cardinal \f$ \frac{sin(x)}{x}\f$.

  \param sinx : Value of sin(x).
  \param x : Value of x.

  \return Sinus cardinal.

*/
double vpMath::sinc(double sinx, double x)
{
  if (fabs(x) < ang_min_sinc) return 1.0 ;
  else  return (sinx/x) ;
}

/*!
  Compute \f$ (1-cos(x))/x^2 \f$

  \param cosx : Value of cos(x).
  \param x : Value of x.

  \return \f$ (1-cosx)/x^2 \f$

*/
double vpMath::mcosc(double cosx, double x)
{
  if (fabs(x) < ang_min_mc) return 0.5 ;
  else  return ((1.0-cosx)/x/x) ;
}

/*!

  Compute \f$ (1-sinc(x))/x^2 \f$ with \f$ sinc(x) = sinx / x \f$.

  \param sinx : value of sin(x).
  \param x  : Value of x.

  \return \f$ (1-sinc(x))/x^2 \f$

*/
double vpMath::msinc(double sinx, double x)
{
  if (fabs(x) < ang_min_mc) return (1./6.0) ;
  else  return ((1.0-sinx/x)/x/x) ;
}

/*!

 Sigmoid function between [x0,x1] with \f$ s(x)=0 if x\le x0\f$ and \f$ s(x)=1 if x \ge x1 \f$
 \param x : Value of x.
 \param x0 : Lower bound (default 0).
 \param x1 : Upper bound (default 1).
  \param n : Degree of the exponential (default 12).

\return \f$1/(1+exp(-n*((x-x0)/(x1-x0)-0.5)))\f$
 */
double vpMath::sigmoid(double x, double x0,double x1, double n)
{
	if(x < x0)
		return 0.;
	else if(x > x1)
		return 1.;
	double l0 = 1./(1.+exp(0.5*n));
	double l1 = 1./(1.+exp(-0.5*n));
	return (1./(1.+exp(-n*((x-x0)/(x1-x0)-0.5)))-l0)/(l1-l0);
}

#endif

/*
 * Local variables:
 * c-basic-offset: 2
 * End:
 */