/usr/include/visp/vpNoise.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | /****************************************************************************
*
* $Id: vpNoise.h 4056 2013-01-05 13:04:42Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Generation of random number with uniform and normal probability density.
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#ifndef vpNoise_hh
#define vpNoise_hh
/*!
\file vpNoise.h
\brief Class for generating random number
with uniform and normal probability density
The algorithms and notations used are described in
James E. Gentle, Random Number Generation and Monte Carlo Methods,
Springer 1998
*/
#include <visp/vpConfig.h>
/*!
\class vpUniRand
\ingroup Random
\brief Class for generating random numbers with uniform probability density.
The algorithms and notations used are described in
Random Number Generation and Monte Carlo Methods
James E. Gentle, Springer 1998
*/
class VISP_EXPORT vpUniRand
{
/*unsigned*/ long a ;
/*unsigned*/ long m ; //2^31-1
/*unsigned*/ long q ; //integer part of m/a
/*unsigned*/ long r ;//r=m mod a
double normalizer ; //we use a normalizer > m to ensure ans will never be 1 (it is the case if x = 739806647)
private:
void draw0();
protected:
long x;
double draw1();
void init()
{
a = 16807 ;
m = /*(unsigned long)*/2147483647 ; //2^31-1
q = 127773 ; //integer part of m/a
r = 2836 ;//r=m mod a
//we use a normalizer > m to ensure ans will never be
// 1 (it is the case if x = 739806647)
normalizer = 2147484721.0 ;
}
public:
vpUniRand(const long seed = 0):x((seed)? seed : 739806647)
{
init() ;
}
double operator()() {return draw1();}
};
/*!
\class vpGaussRand
\ingroup Random
\brief Class for generating random number with normal probability density.
The algorithms and notations used are described in "Random Number Generation and Monte Carlo Methods",
James E. Gentle, Springer 1998
The code below shows how to use the random generator.
\code
#include <iostream>
#include <visp/vpNoise.h>
int main()
{
vpGaussRand noise(0.5, 0);
for(int i=0; i< 10; i++) {
std::cout << "noise " << i << ": " << noise() << std::endl;
}
return 0;
}
\endcode
*/
class vpGaussRand : public vpUniRand
{
double mean;
double sigma;
public:
// Initialization
vpGaussRand() {init();mean=0;sigma=0;x=739806647;}
vpGaussRand(const double sqrtvariance,
const double _mean,
const long seed = 0):mean(_mean), sigma(sqrtvariance)
{
init() ;
mean = 0 ;
if (seed) x=seed; else x=739806647;
}
/*!
Set the standard deviation and mean for gaussian noise
\param _s new standard deviation
\param _m new mean
*/
inline void setSigmaMean(const double _s, const double _m) {mean=_m;sigma=_s;}
/*!
Set the seed of the noise
\param seed new seed
*/
inline void seed(const long seed) {x=seed;}
inline double operator()() {return sigma*gaussianDraw()+mean;}
private :
double gaussianDraw();
};
#endif
|