This file is indexed.

/usr/include/visp/vpRansac.h is in libvisp-dev 2.8.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/****************************************************************************
 *
 * $Id: vpRansac.h 4056 2013-01-05 13:04:42Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Ransac robust algorithm.
 *
 * Authors:
 * Eric Marchand
 *
 *****************************************************************************/


/*!
  \file vpRansac.h

  template class for
*/

#ifndef vpRANSAC_HH
#define vpRANSAC_HH



#include <visp/vpNoise.h> // random number generation
#include <visp/vpDebug.h> // debug and trace
#include <visp/vpColVector.h>
#include <visp/vpMath.h>
#include <ctime>
/*!
  \class vpRansac
  \ingroup Robust
  
  \brief This class is a generic implementation of the Ransac algorithm. It 
  cannot be used alone.

  Creation: june, 15 2005

  RANSAC is described in :
  
  M.A. Fishler and R.C. Boles. "Random sample consensus: A paradigm for model
  fitting with applications to image analysis and automated cartography". Comm.
  Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981

  Richard Hartley and Andrew Zisserman. "Multiple View Geometry in
  Computer Vision". pp 101-113. Cambridge University Press, 2001

  The code of this class is inspired by :
  Peter Kovesi
  School of Computer Science & Software Engineering
  The University of Western Australia
  pk at csse uwa edu au
  http://www.csse.uwa.edu.au/~pk


  \sa vpHomography


 */



template <class vpTransformation>
class vpRansac
{
public:
  static  bool ransac(unsigned int npts,
		      vpColVector &x,
		      unsigned int s, double t,
		      vpColVector &model,
		      vpColVector &inliers,
		      int consensus = 1000,
          double areaThreshold = 0.0,
          const int maxNbumbersOfTrials = 10000);
};

/*!
  \brief
  RANSAC - Robustly fits a model to data with the RANSAC algorithm

  \param npts : The number of data points.

  \param x : Data sets to which we are seeking to fit a model M It is assumed
  that x is of size [d x Npts] where d is the dimensionality of the data and
  npts is the number of data points.

  \param s : The minimum number of samples from x required by fitting fn to
  fit a model.

  \param t : The distance threshold between data point and the model used to
  decide whether a point is an inlier or not.

  \param M : The model having the greatest number of inliers.

  \param inliers :  An array of indices of the elements of x that were the
  inliers for the best model.

  \param consensus :  Consensus

  \param areaThreshold : Not used.

  \param maxNbumbersOfTrials : Maximum number of trials. Even if a solution is
  not found, the method is stopped.

*/

template <class vpTransformation>
bool
vpRansac<vpTransformation>::ransac(unsigned int npts, vpColVector &x,
				   unsigned int s, double t,
				   vpColVector &M,
				   vpColVector &inliers,
				   int consensus,
           double /* areaThreshold */,
           const int maxNbumbersOfTrials
				   )
{


/*   bool isplanar; */
/*   if (s == 4) isplanar = true; */
/*   else isplanar = false; */

  double eps = 1e-6 ;
  double p = 0.99;    // Desired probability of choosing at least one sample
					  // free from outliers

  int maxTrials = maxNbumbersOfTrials;      // Maximum number of trials before we give up.
  int  maxDataTrials = 1000;  // Max number of attempts to select a non-degenerate
							  // data set.

  // Sentinel value allowing detection of solution failure.
  bool solutionFind = false ;
  vpColVector bestM ;
  int trialcount = 0;
  int  bestscore =  -1;
  double   N = 1;            // Dummy initialisation for number of trials.

  vpUniRand random((const long)time(NULL)) ;
  vpColVector bestinliers ;
  unsigned int *ind = new unsigned int [s] ;
  int numiter = 0;
  int ninliers = 0;
  double residual = 0.0;
  while(( N > trialcount) && (consensus > bestscore))
  {
    // Select at random s datapoints to form a trial model, M.
    // In selecting these points we have to check that they are not in
    // a degenerate configuration.

    bool degenerate = true;
    int count = 1;

    while ( degenerate == true)
    {
      // Generate s random indicies in the range 1..npts
      for  (unsigned int i=0 ; i < s ; i++)
	ind[i] = (unsigned int)ceil(random()*npts) -1;

      // Test that these points are not a degenerate configuration.
      degenerate = vpTransformation::degenerateConfiguration(x,ind) ;
      //   degenerate = feval(degenfn, x(:,ind));

      // Safeguard against being stuck in this loop forever
      count = count + 1;

      if (count > maxDataTrials)      {
	      delete [] ind;
	      vpERROR_TRACE("Unable to select a nondegenerate data set");
	      throw(vpException(vpException::fatalError, "Unable to select a nondegenerate data set"));
	      //return false; //Useless after a throw() function
      }
    }
    // Fit model to this random selection of data points.
    vpTransformation::computeTransformation(x,ind, M);

    vpColVector d ;
    // Evaluate distances between points and model.
    vpTransformation::computeResidual(x, M, d) ;

    // Find the indices of points that are inliers to this model.
    residual = 0.0;
    ninliers =0 ;
    for (unsigned int i=0 ; i < npts ; i++)
    {
      double resid = fabs(d[i]);
      if (resid < t)
      {
	inliers[i] = 1 ;
	ninliers++ ;
	residual += fabs(d[i]);
      }
      else inliers[i] = 0;
    }

    if (ninliers > bestscore)    // Largest set of inliers so far...
    {
      bestscore = ninliers;  // Record data for this model
      bestinliers = inliers;
      bestM = M;
      solutionFind = true ;

      // Update estimate of N, the number of trials to ensure we pick,
      // with probability p, a data set with no outliers.

      double fracinliers =  (double)ninliers / (double)npts;

      double pNoOutliers = 1 -  pow(fracinliers,static_cast<int>(s));

      pNoOutliers = vpMath::maximum(eps, pNoOutliers);  // Avoid division by -Inf
      pNoOutliers = vpMath::minimum(1-eps, pNoOutliers);// Avoid division by 0.
      N = (log(1-p)/log(pNoOutliers));
    }

    trialcount = trialcount+1;
    // Safeguard against being stuck in this loop forever
    if (trialcount > maxTrials)
    {
      vpTRACE("ransac reached the maximum number of %d trials",   maxTrials);
      break ;
    }
    numiter++;
  }

  if (solutionFind==true)   // We got a solution
  {
    M = bestM;
    inliers = bestinliers;
  }
  else
  {
    vpTRACE("ransac was unable to find a useful solution");
    M = 0;
  }

  if(ninliers > 0)
    residual /= ninliers;
  delete [] ind;

  return true;
}


#endif