/usr/include/visp/vpRxyzVector.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /****************************************************************************
*
* $Id: vpRxyzVector.h 4056 2013-01-05 13:04:42Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Rxyz angle parameterization for the rotation.
* Rxyz(phi,theta,psi) = Rot(x,phi)Rot(y,theta)Rot(z,psi).
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#ifndef vpRxyzVECTOR_H
#define vpRxyzVECTOR_H
/*!
\file vpRxyzVector.h
\brief Class that consider the case of the Rxyz angle
parameterization for the rotation.
Rxyz(phi,theta,psi) = Rot(x,phi)Rot(y,theta)Rot(z,psi)
*/
#include <visp/vpMatrix.h>
#include <visp/vpRotationVector.h>
#include <visp/vpRotationMatrix.h>
class vpRotationMatrix;
class vpThetaUVector;
/*!
\class vpRxyzVector
\ingroup RotTransformation
\brief Class that consider the case of the Euler
\f$(\varphi,\theta,\psi)\f$ angle using the x-y-z convention, where \f$(\varphi,\theta,\psi)\f$ are respectively the
rotation angles around the \f$x\f$, \f$y\f$ and \f$z\f$ axis.
\f[R_{xyz}(\varphi,\theta,\psi) = R_x(\varphi) \; R_y(\theta) \; R_z(\psi)\f]
with
\f[R_{x}(\varphi) = \left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 &\cos \varphi & -\sin\varphi \\
0 &\sin \varphi & \cos\varphi \\
\end{array}
\right) \;
R_{y}(\theta) = \left(
\begin{array}{ccc}
\cos \theta & 0 & \sin\theta\\
0 & 1 & 0 \\
-\sin\theta & 0 &\cos \theta
\end{array}
\right) \;
R_{z}(\psi) = \left(
\begin{array}{ccc}
\cos \psi & -\sin\psi & 0\\
\sin\psi &\cos \psi& 0 \\
0 & 0 & 1
\end{array}
\right)\f]
The rotation matrix corresponding to the x-y-z convention is given by:
\f[
R_{xyz}(\varphi,\theta,\psi) = \left(
\begin{array}{ccc}
\cos\theta \cos\psi & -\cos\theta \sin\psi & \sin\theta \\
\sin\varphi \sin\theta \cos\psi + \cos\varphi\sin\psi & -\sin\varphi \sin\theta \sin\psi +\cos\varphi\cos\psi & -\sin\varphi \cos\theta \\
-\cos\varphi \sin\theta \cos\psi + \sin\varphi\sin\psi & \cos\varphi \sin\theta \sin\psi +\sin\varphi\cos\psi & \cos\varphi \cos\theta
\end{array}
\right)
\f]
The code below shows first how to initialize this representation of
Euler angles, than how to contruct a rotation matrix from a
vpRxyzVector and finaly how to extract the vpRxyzVector Euler angles
from the build rotation matrix.
\code
#include <iostream>
#include <visp/vpMath.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpRxyzVector.h>
int main()
{
vpRxyzVector rxyz;
// Initialise the Euler angles
rxyz[0] = vpMath::rad( 45.f); // phi angle in rad around x axis
rxyz[1] = vpMath::rad(-30.f); // theta angle in rad around y axis
rxyz[2] = vpMath::rad( 90.f); // psi angle in rad around z axis
// Construct a rotation matrix from the Euler angles
vpRotationMatrix R(rxyz);
// Extract the Euler angles around x,y,z axis from a rotation matrix
rxyz.buildFrom(R);
// Print the extracted Euler angles. Values are the same than the
// one used for initialization
std::cout << rxyz;
// Since the rotation vector is 3 values column vector, the
// transpose operation produce a row vector.
vpRowVector rxyz_t = rxyz.t();
// Print the transpose row vector
std::cout << rxyz_t << std::endl;
}
\endcode
*/
class VISP_EXPORT vpRxyzVector : public vpRotationVector
{
friend class vpRotationMatrix;
friend class vpThetaUVector;
public:
//! Default constructor. Initialize the angles to zero.
vpRxyzVector() { ; }
// Copy constructor.
vpRxyzVector(const vpRxyzVector &m);
/*!
Constructor from 3 angles (in radian).
\param phi : \f$\varphi\f$ angle around the \f$x\f$ axis.
\param theta : \f$\theta\f$ angle around the \f$y\f$ axis.
\param psi : \f$\psi\f$ angle around the \f$z\f$ axis.
*/
vpRxyzVector(const double phi, const double theta, const double psi) :
vpRotationVector (3) { r[0]=phi;r[1]=theta;r[2]=psi; }
// initialize a Rxyz vector from a rotation matrix
vpRxyzVector(const vpRotationMatrix& R) ;
// initialize a Rxyz vector from a ThetaU vector
vpRxyzVector(const vpThetaUVector& tu) ;
// Affectation of two vectors.
vpRxyzVector &operator=(const vpRxyzVector &m);
/*!
Construction from 3 angles (in radian).
\param phi : \f$\varphi\f$ angle around the \f$x\f$ axis.
\param theta : \f$\theta\f$ angle around the \f$y\f$ axis.
\param psi : \f$\psi\f$ angle around the \f$z\f$ axis.
*/
void buildFrom(const double phi, const double theta, const double psi)
{
r[0] = phi ;
r[1] = theta ;
r[2] = psi ;
}
// convert a rotation matrix into Rxyz vector
vpRxyzVector buildFrom(const vpRotationMatrix& R) ;
// convert a ThetaU vector into a Rxyz vector
vpRxyzVector buildFrom(const vpThetaUVector& tu) ;
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|