/usr/include/visp/vpServo.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | /****************************************************************************
*
* $Id: vpServo.h 4276 2013-06-25 12:36:48Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Visual servoing control law.
*
* Authors:
* Eric Marchand
* Nicolas Mansard
* Fabien Spindler
*
*****************************************************************************/
#ifndef vpServo_H
#define vpServo_H
/*!
\file vpServo.h
\brief Class required to compute the visual servoing control law
*/
#include <visp/vpMatrix.h>
#include <visp/vpVelocityTwistMatrix.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpServoException.h>
#include <visp/vpList.h>
#include <visp/vpAdaptiveGain.h>
/*!
\class vpServo
\ingroup VsTask
\brief Class required to compute the visual servoing control law descbribed
in \cite Chaumette06a and \cite Chaumette07a.
\warning To avoid potential memory leaks, it is mendatory to call
explicitly the kill() function to destroy the task. Otherwise, the
destructor ~vpServo() launch an exception
vpServoException::notKilledProperly.
To learn how to use this class, we suggest first to follow the \ref tutorial-ibvs.
The example below shows how to build a position-based visual servo
from 3D visual features \f$s=({^{c^*}}t_c,\theta u)\f$. In that
case, we have \f$s^* = 0\f$. Let us denote \f$\theta u\f$ the angle/axis
parametrization of the rotation \f${^{c^*}}R_c\f$. Moreover,\f$
{^{c^*}}t_c\f$ and \f${^{c^*}}R_c\f$ represent respectively the
translation and the rotation between the desired camera frame and
the current one obtained by pose estimation (see vpPose class).
\code
#include <visp/vpColVector.h>
#include <visp/vpFeatureThetaU.h>
#include <visp/vpFeatureTranslation.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
#include <visp/vpServo.h>
int main()
{
// Creation of an homogeneous matrix that represent the displacement
// the camera has to achieve to move from the desired camera frame
// and the current one
vpHomogeneousMatrix cdMc;
// ... cdMc is here the result of a pose estimation
// Creation of the current visual feature s = (c*_t_c, ThetaU)
vpFeatureTranslation s_t(vpFeatureTranslation::cdMc);
vpFeatureThetaU s_tu(vpFeatureThetaU::cdRc);
// Set the initial values of the current visual feature s = (c*_t_c, ThetaU)
s_t.buildFrom(cdMc);
s_tu.buildFrom(cdMc);
// Build the desired visual feature s* = (0,0)
vpFeatureTranslation s_star_t(vpFeatureTranslation::cdMc); // Default initialization to zero
vpFeatureThetaU s_star_tu(vpFeatureThetaU::cdRc);// Default initialization to zero
vpColVector v; // Camera velocity
double error; // Task error
// Creation of the visual servo task.
vpServo task;
// Visual servo task initialization
// - Camera is monted on the robot end-effector and velocities are
// computed in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// - Interaction matrix is computed with the current visual features s
task.setInteractionMatrixType(vpServo::CURRENT);
// - Set the contant gain to 1
task.setLambda(1);
// - Add current and desired translation feature
task.addFeature(s_t, s_star_t);
// - Add current and desired ThetaU feature for the rotation
task.addFeature(s_tu, s_star_tu);
// Visual servoing loop. The objective is here to update the visual
// features s = (c*_t_c, ThetaU), compute the control law and apply
// it to the robot
do {
// ... cdMc is here the result of a pose estimation
// Update the current visual feature s
s_t.buildFrom(cdMc); // Update translation visual feature
s_tu.buildFrom(cdMc); // Update ThetaU visual feature
v = task.computeControlLaw(); // Compute camera velocity skew
error = ( task.getError() ).sumSquare(); // error = s^2 - s_star^2
} while (error > 0.0001); // Stop the task when current and desired visual features are close
// A call to kill() is requested here to destroy properly the current
// and desired feature lists.
task.kill();
}
\endcode
*/
class VISP_EXPORT vpServo
{
/*
Choice of the visual servoing control law
*/
public:
typedef enum
{
NONE,
EYEINHAND_CAMERA,
EYEINHAND_L_cVe_eJe,
EYETOHAND_L_cVe_eJe,
EYETOHAND_L_cVf_fVe_eJe,
EYETOHAND_L_cVf_fJe
} vpServoType;
typedef enum
{
CURRENT,
DESIRED,
MEAN,
USER_DEFINED
} vpServoIteractionMatrixType;
typedef enum
{
TRANSPOSE,
PSEUDO_INVERSE
} vpServoInversionType;
typedef enum
{
ALL, /*!< Print all the task information. */
CONTROLLER, /*!< Print the type of controller law. */
ERROR_VECTOR, /*!< Print the error vector \f$(s-s^*)\f$. */
FEATURE_CURRENT, /*!< Print the current features \f$s\f$. */
FEATURE_DESIRED, /*!< Print the desired features \f$s^*\f$. */
GAIN, /*!< Print the gain \f$\lambda\f$. */
INTERACTION_MATRIX, /*!< Print the interaction matrix. */
MINIMUM /*!< Same as vpServoPrintType::ERROR_VECTOR. */
} vpServoPrintType;
public:
// default constructor
vpServo();
//! constructor with Choice of the visual servoing control law
vpServo(vpServoType _servoType) ;
//! destructor
virtual ~vpServo() ;
/*!
Return the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.
*/
vpVelocityTwistMatrix get_cVe() const { return cVe; }
/*!
Return the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.
*/
vpVelocityTwistMatrix get_cVf() const { return cVf; }
/*!
Return the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).
*/
vpVelocityTwistMatrix set_fVe() const { return fVe; }
/*!
Return the robot jacobian expressed in the end-effector frame.
*/
vpMatrix get_eJe() const { return eJe; }
/*!
Return the robot jacobian expressed in the robot fixed frame (also called world or base frame).
*/
vpMatrix get_fJe() const { return fJe; }
//! destruction (memory deallocation if required)
void kill() ;
//! Choice of the visual servoing control law
void setServo(vpServoType _servo_type) ;
void set_cVe(vpVelocityTwistMatrix &_cVe) { cVe = _cVe ; init_cVe = true ; }
void set_cVf(vpVelocityTwistMatrix &_cVf) { cVf = _cVf ; init_cVf = true ; }
void set_fVe(vpVelocityTwistMatrix &_fVe) { fVe = _fVe ; init_fVe = true ; }
void set_cVe(vpHomogeneousMatrix &cMe) { cVe.buildFrom(cMe); init_cVe=true ;}
void set_cVf(vpHomogeneousMatrix &cMf) { cVf.buildFrom(cMf); init_cVf=true ;}
void set_fVe(vpHomogeneousMatrix &fMe) { fVe.buildFrom(fMe); init_fVe=true ;}
void set_eJe(vpMatrix &_eJe) { eJe = _eJe ; init_eJe = true ; }
void set_fJe(vpMatrix &_fJe) { fJe = _fJe ; init_fJe = true ; }
//! Set the type of the interaction matrix (current, mean, desired, user).
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType,
const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE) ;
/*!
Set a variable which enable to compute the interaction matrix for each iteration.
\param forceInteractionMatrixComputation: If true it forces the interaction matrix computation even if it is already done.
*/
void setForceInteractionMatrixComputation(bool forceInteractionMatrixComputation) {this->forceInteractionMatrixComputation = forceInteractionMatrixComputation;}
//! set the gain lambda
void setLambda(double _lambda) { lambda .initFromConstant (_lambda) ; }
void setLambda(const double at_zero,
const double at_infinity,
const double deriv_at_zero)
{ lambda .initStandard (at_zero, at_infinity, deriv_at_zero) ; }
void setLambda(const vpAdaptiveGain& _l){lambda=_l;}
//! create a new ste of two visual features
void addFeature(vpBasicFeature& s, vpBasicFeature& s_star,
const unsigned int select=vpBasicFeature::FEATURE_ALL) ;
//! create a new ste of two visual features
void addFeature(vpBasicFeature& s,
const unsigned int select=vpBasicFeature::FEATURE_ALL) ;
//! compute the interaction matrix related to the set of visual features
vpMatrix computeInteractionMatrix() ;
// compute the error between the current set of visual features and
// the desired set of visual features
vpColVector computeError() ;
//! compute the desired control law
vpColVector computeControlLaw() ;
//! test if all the initialization are correct if true control law can
//! be computed
bool testInitialization() ;
//! test if all the update are correct if true control law can
//! be computed
bool testUpdated() ;
//! Add a secondary task.
vpColVector secondaryTask(vpColVector &de2dt) ;
//! Add a secondary task.
vpColVector secondaryTask(vpColVector &e2, vpColVector &de2dt) ;
//! Return the task dimension.
unsigned int getDimension() ;
/*!
Return the error \f$(s - s^*)\f$ between the current set of visual features
\f$s\f$ and the desired set of visual features \f$s^*\f$.
The error vector is updated after a call of computeError() or computeControlLaw().
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpColVector e = task.getError(); // Get the error vector
\endcode
*/
inline vpColVector getError() const
{
return error ;
}
/*
Return the interaction matrix \f$L\f$ used to compute the task jacobian \f$J_1\f$.
The interaction matrix is updated after a call to computeInteractionMatrix() or computeControlLaw().
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix L = task.getInteractionMatrix(); // Get the interaction matrix used to compute v
\endcode
\sa getTaskJacobian()
*/
inline vpMatrix getInteractionMatrix()
{
return L;
}
/*!
Return the projection operator \f${\bf I}-{\bf W}^+{\bf W}\f$. This operator is updated
after a call of computeControlLaw().
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix I_WpW = task.getI_WpW(); // Get the projection operator
\endcode
\sa getWpW()
*/
inline vpMatrix getI_WpW() const
{
return I_WpW;
}
/*!
Return the visual servo type.
*/
inline vpServoType getServoType() const
{
return servoType;
}
/*!
Return the task jacobian \f$J_1\f$. The task jacobian is updated after a call of computeControlLaw().
In the general case, the task jacobian is given by \f$J_1 = L {^c}V_a {^a}J_e\f$.
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix J1 = task.getTaskJacobian(); // Get the task jacobian used to compute v
\endcode
\sa getTaskJacobianPseudoInverse(), getInteractionMatrix()
*/
inline vpMatrix getTaskJacobian() const
{
return J1;
}
/*!
Return the pseudo inverse of the task jacobian \f$J_1\f$. The task jacobian
and its pseudo inverse are updated after a call of computeControlLaw().
\return Pseudo inverse \f${J_1}^{+}\f$ of the task jacobian.
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix J1p = task.getTaskJacobianPseudoInverse(); // Get the pseudo inverse of task jacobian used to compute v
\endcode
\sa getTaskJacobian()
*/
inline vpMatrix getTaskJacobianPseudoInverse() const
{
return J1p;
}
/*!
Return the rank of the task jacobian. The rank is updated after a call of computeControlLaw().
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
double rank = task.getTaskRank(); // Get the rank of the task jacobian
\endcode
*/
inline double getTaskRank() const
{
return rankJ1;
}
/*!
Get task singular values.
\return Singular values that relies on the task jacobian pseudo inverse.
*/
inline vpColVector getTaskSingularValues()
{
return sv;
}
/*!
Return the projection operator \f${\bf W}^+{\bf W}\f$. This operator is updated
after a call of computeControlLaw().
\code
vpServo task;
...
vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
vpMatrix WpW = task.getWpW(); // Get the projection operator
\endcode
\sa getI_WpW()
*/
inline vpMatrix getWpW() const
{
return WpW;
}
void print(const vpServo::vpServoPrintType display_level=ALL,
std::ostream &os = std::cout) ;
protected:
//! basic initialization
void init() ;
public:
//! Interaction matrix
vpMatrix L ;
//! Error \f$(s - s^*)\f$ between the current set of visual features
//! \f$s\f$ and the desired set of visual features \f$s^*\f$.
//! This vector is updated after a call of computeError() or computeControlLaw().
vpColVector error ;
//! Task Jacobian \f$J_1 = L {^c}V_a {^a}J_e\f$.
vpMatrix J1 ;
//! Pseudo inverse \f${J_1}^{+}\f$ of the task Jacobian.
vpMatrix J1p ;
//! Current state of visual features \f$s\f$.
//! This vector is updated after a call of computeError() or computeControlLaw().
vpColVector s ;
//! Desired state of visual features \f$s^*\f$.
//! This vector is updated after a call of computeError() or computeControlLaw().
vpColVector sStar ;
//! Primary task \f$e_1 = {J_1}^{+}(s-s*)\f$
vpColVector e1 ;
//! Task \f$e = e_1 + (I-{J_1}^{+} J_1) e_2\f$
vpColVector e ;
//! Articular velocity
vpColVector q_dot ;
//! Camera velocity
vpColVector v ;
//! Chosen visual servoing control law
vpServoType servoType;
//! Rank of the task Jacobian
unsigned int rankJ1 ;
//! List of visual features (produce \f$s\f$)
vpList<vpBasicFeature *> featureList ;
//! List of desired visual features (produce \f$s^*\f$)
vpList<vpBasicFeature *> desiredFeatureList ;
//! List of selection among visual features
//! used for selection of a subset of each visual feature if required
vpList<unsigned int> featureSelectionList ;
//! Gain
vpAdaptiveGain lambda ;
//! Sign of the interaction +/- 1 (1 for eye-in-hand, -1 for
//! eye-to-hand configuration)
int signInteractionMatrix ;
//! Type of the interaction matrox (current, mean, desired, user)
vpServoIteractionMatrixType interactionMatrixType ;
//! Indicates if the transpose or the pseudo inverse of the
//!interaction matrix should be used to compute the task
vpServoInversionType inversionType ;
protected:
/*
Twist transformation matrix
*/
//! Twist transformation matrix between Re and Rc
vpVelocityTwistMatrix cVe ;
bool init_cVe ;
//! Twist transformation matrix between Rf and Rc
vpVelocityTwistMatrix cVf ;
bool init_cVf ;
//! Twist transformation matrix between Re and Rf
vpVelocityTwistMatrix fVe ;
bool init_fVe ;
/*
Jacobians
*/
//! Jacobian expressed in the end-effector frame.
vpMatrix eJe ;
bool init_eJe ;
//! Jacobian expressed in the robot reference frame.
vpMatrix fJe ;
bool init_fJe ;
/*
Task building
*/
//! true if the error has been computed
bool errorComputed ;
//! true if the interaction matrix has been computed
bool interactionMatrixComputed ;
//! dimension of the task
unsigned int dim_task ;
bool taskWasKilled; // flag to indicate if the task was killed
//! Force the interaction matrix computation even if it is already done.
bool forceInteractionMatrixComputation;
//! projection operators WpW
vpMatrix WpW ;
//! projection operators I-WpW
vpMatrix I_WpW ;
vpColVector sv ; // singular values from the pseudo inverse
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|