This file is indexed.

/usr/lib/ocaml/zarith/z.mli is in libzarith-ocaml-dev 1.2.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
(* This file was automatically generated by z_pp.pl from z.mlip *)  (**
   Integers.

   This modules provides arbitrary-precision integers.
   Small integers internally use a regular OCaml [int].
   When numbers grow too large, we switch transparently to GMP numbers
   ([mpn] numbers fully allocated on the OCaml heap).

   This interface is rather similar to that of [Int32] and [Int64],
   with some additional functions provided natively by GMP
   (GCD, square root, pop-count, etc.).


   This file is part of the Zarith library 
   http://forge.ocamlcore.org/projects/zarith .
   It is distributed under LGPL 2 licensing, with static linking exception.
   See the LICENSE file included in the distribution.
   
   Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
   Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
   a joint laboratory by:
   CNRS (Centre national de la recherche scientifique, France),
   ENS (École normale supérieure, Paris, France),
   INRIA Rocquencourt (Institut national de recherche en informatique, France).

 *)


(** {1 Toplevel} *)

(** For an optimal experience with the [ocaml] interactive toplevel, 
    the magic commands are:

    {[
    #load "zarith.cma";;
    #install_printer Z.pp_print;;
    ]}
*)



(** {1 Types} *)

type t
(** Type of integers of arbitrary length. *)

exception Overflow
(** Raised by conversion functions when the value cannot be represented in
    the destination type.
 *)

(** {1 Construction} *)

val zero: t
(** The number 0. *)

val one: t
(** The number 1. *)

val minus_one: t
(** The number -1. *)

val of_int: int -> t
(** Converts from a base integer. *)

external of_int32: int32 -> t = "ml_z_of_int32"
(** Converts from a 32-bit integer. *)

external of_int64: int64 -> t = "ml_z_of_int64"
(** Converts from a 64-bit integer. *)

external of_nativeint: nativeint -> t = "ml_z_of_nativeint"
(** Converts from a native integer. *)

external of_float: float -> t = "ml_z_of_float"
(** Converts from a floating-point value. 
    The value is truncated.
    Raises [Overflow] on infinity and NaN arguments.
 *)

val of_string: string -> t
(** Converts a string to an integer.
    An optional [-] prefix indicates a negative number, while a [+]
    prefix is ignored.
    An optional prefix [0x], [0o], or [0b] (following the optional [-]
    or [+] prefix) indicates that the number is,
    represented, in hexadecimal, octal, or binary, respectively.
    Otherwise, base 10 is assumed.
    (Unlike C, a lone [0] prefix does not denote octal.)
 *)

external of_string_base: int -> string -> t = "ml_z_of_string_base"
(** Parses a number represented as a string in the specified base,
    with optional [-] or [+] prefix.
    The base must be between 2 and 16.
 *)


(** {1 Basic arithmetic operations} *)

external succ: t -> t = "ml_z_succ" "ml_as_z_succ"
(** Returns its argument plus one. *)

external pred: t -> t = "ml_z_pred" "ml_as_z_pred"
(** Returns its argument minus one. *)

external abs: t -> t = "ml_z_abs" "ml_as_z_abs"
(** Absolute value. *)

external neg: t -> t = "ml_z_neg" "ml_as_z_neg"
(** Unary negation. *)

external add: t -> t -> t = "ml_z_add" "ml_as_z_add"
(** Addition. *)

external sub: t -> t -> t = "ml_z_sub" "ml_as_z_sub"
(** Subtraction. *)

external mul: t -> t -> t = "ml_z_mul" "ml_as_z_mul"
(** Multiplication. *)

external div: t -> t -> t = "ml_z_div" "ml_as_z_div"
(** Integer division. The result is truncated towards zero
    and obeys the rule of signs.
    Raises [Division_by_zero] if the divisor (second argument) is 0.
 *)

external rem: t -> t -> t = "ml_z_rem" "ml_as_z_rem"
(** Integer remainder. Can raise a [Division_by_zero].
    The result of [rem a b] has the sign of [a], and its absolute value is
    strictly smaller than the absolute value of [b].
    The result satisfies the equality [a = b * div a b + rem a b].
 *)

external div_rem: t -> t -> (t * t) = "ml_z_div_rem"
(** Computes both the integer quotient and the remainder.
    [div_rem a b] is equal to [(div a b, rem a b)].
    Raises [Division_by_zero] if [b = 0].
 *)

external cdiv: t -> t -> t = "ml_z_cdiv"
(** Integer division with rounding towards +oo (ceiling).
    Can raise a [Division_by_zero]. 
 *)

external fdiv: t -> t -> t = "ml_z_fdiv"
(** Integer division with rounding towards -oo (floor).
    Can raise a [Division_by_zero]. 
 *)

val ediv_rem: t -> t -> (t * t)
(** Euclidean division and remainder.  [ediv_rem a b] returns a pair [(q, r)]
    such that [a = b * q + r] and [0 <= r < |b|].
    Raises [Division_by_zero] if [b = 0].
 *)

val ediv: t -> t -> t
(** Euclidean division. [ediv a b] is equal to [fst (ediv_rem a b)].
    The result satisfies [0 <= a - b * ediv a b < |b|].
    Raises [Division_by_zero] if [b = 0].
 *)

val erem: t -> t -> t
(** Euclidean remainder.  [erem a b] is equal to [snd (ediv_rem a b)].
    The result satisfies [0 <= erem a b < |b|] and
    [a = b * ediv a b + erem a b].  Raises [Division_by_zero] if [b = 0].
 *)

external divexact: t -> t -> t = "ml_z_divexact"
(** [divexact a b] divides [a] by [b], only producing correct result when the
    division is exact, i.e., when [b] evenly divides [a].
    It should be faster than general division.
    Can raise a [Division_by_zero]. 
*)


(** {1 Bit-level operations} *)

(** For all bit-level operations, negative numbers are considered in 2's
    complement representation, starting with a virtual infinite number of 
    1s.
 *)

external logand: t -> t -> t = "ml_z_logand" "ml_as_z_logand"
(** Bitwise logical and. *)
    
external logor: t -> t -> t = "ml_z_logor" "ml_as_z_logor"
(** Bitwise logical or. *)
    
external logxor: t -> t -> t = "ml_z_logxor" "ml_as_z_logxor"
(** Bitwise logical exclusive or. *)

external lognot: t -> t = "ml_z_lognot" "ml_as_z_lognot"
(** Bitwise logical negation. 
    The identity [lognot a]=[-a-1] always hold.
 *)

external shift_left: t -> int -> t = "ml_z_shift_left" "ml_as_z_shift_left"
(** Shifts to the left. 
    Equivalent to a multiplication by a power of 2.
    The second argument must be non-negative.
 *)

external shift_right: t -> int -> t = "ml_z_shift_right" "ml_as_z_shift_right"
(** Shifts to the right. 
    This is an arithmetic shift, 
    equivalent to a division by a power of 2 with rounding towards -oo.
    The second argument must be non-negative.
 *)

external shift_right_trunc: t -> int -> t = "ml_z_shift_right_trunc"
(** Shifts to the right, rounding towards 0.
    This is equivalent to a division by a power of 2, with truncation.
    The second argument must be non-negative.
 *)

external popcount: t -> int = "ml_z_popcount"
(** Counts the number of bits set. 
    Raises [Overflow] for negative arguments, as those have an infinite
    number of bits set.
 *)

external hamdist: t -> t -> int = "ml_z_hamdist"
(** Counts the number of different bits. 
    Raises [Overflow] if the arguments have different signs
    (in which case the distance is infinite).
 *)


(** {1 Conversions} *)

(** Note that, when converting to an integer type that cannot represent the 
    converted value, an [Overflow] exception is raised.
 *)

external to_int: t -> int = "ml_z_to_int"
(** Converts to a base integer. May raise an [Overflow]. *)

external to_int32: t -> int32 = "ml_z_to_int32"
(** Converts to a 32-bit integer. May raise an [Overflow]. *)

external to_int64: t -> int64 = "ml_z_to_int64"
(** Converts to a 64-bit integer. May raise [Overflow]. *)

external to_nativeint: t -> nativeint = "ml_z_to_nativeint"
(** Converts to a native integer. May raise an [Overflow]. *)

external to_float: t -> float = "ml_z_to_float"
(** Converts to a floating-point value.
    This function is designed explicitly for the case where the FPU 
    rounds towards +oo, in which case the resulting float always
    over-approximates the argument.
    It is not guaranteed to be the least over-approximation though.
    In the (default) case where the FPU does not round towards +oo, it is
    only guaranteed that the result approximates the argument (but it may
    not be the nearest float).
 *)

val to_string: t -> string
(** Gives a human-readable, decimal string representation of the argument. *)

external format: string -> t -> string = "ml_z_format"
(** Gives a string representation of the argument in the specified
    printf-like format.
    The general specification has the following form:

    [% \[flags\] \[width\] type]

    Where the type actually indicates the base:
    
    - [i], [d], [u]: decimal
    - [b]: binary
    - [o]: octal
    - [x]: lowercase hexadecimal
    - [X]: uppercase hexadecimal

    Supported flags are:

    - [+]: prefix positive numbers with a [+] sign
    - space: prefix positive numbers with a space
    - [-]: left-justify (default is right justification)
    - [0]: pad with zeroes (instead of spaces)
    - [#]: alternate formatting (actually, simply output a literal-like prefix: [0x], [0b], [0o])

    Unlike the classic [printf], all numbers are signed (even hexadecimal ones),
    there is no precision field, and characters that are not part of the format
    are simply ignored (and not copied in the output).
 *)

external fits_int: t -> bool = "ml_z_fits_int" "noalloc"
(** Whether the argument fits in a regular [int]. *)

external fits_int32: t -> bool = "ml_z_fits_int32" "noalloc"
(** Whether the argument fits in an [int32]. *)

external fits_int64: t -> bool = "ml_z_fits_int64" "noalloc"
(** Whether the argument fits in an [int64]. *)

external fits_nativeint: t -> bool = "ml_z_fits_nativeint" "noalloc"
(** Whether the argument fits in a [nativeint]. *)


(** {1 Printing} *)

val print: t -> unit
(** Prints the argument on the standard output. *)

val output: out_channel -> t -> unit
(** Prints the argument on the specified channel.
    Also intended to be used as [%a] format printer in [Printf.printf].
 *)

val sprint: unit -> t -> string
(** To be used as [%a] format printer in [Printf.sprintf]. *)

val bprint: Buffer.t -> t -> unit
(** To be used as [%a] format printer in [Printf.bprintf]. *)

val pp_print: Format.formatter -> t -> unit
(** Prints the argument on the specified formatter. 
    Can be used as [%a] format printer in [Format.printf] and as
    argument to [#install_printer] in the top-level.
 *)


(** {1 Ordering} *)

external compare: t -> t -> int = "ml_z_compare" "noalloc"
(** Comparison.  [compare x y] returns 0 if [x] equals [y],
    -1 if [x] is smaller than [y], and 1 if [x] is greater than [y].

    Note that Pervasive.compare can be used to compare reliably two integers
    only on OCaml 3.12.1 and later versions.
 *)

external equal: t -> t -> bool = "ml_z_equal" "noalloc"
(** Equality test. *)

val leq: t -> t -> bool
(** Less than or equal. *)

val geq: t -> t -> bool
(** Greater than or equal. *)

val lt: t -> t -> bool
(** Less than (and not equal). *)

val gt: t -> t -> bool
(** Greater than (and not equal). *)

external sign: t -> int = "ml_z_sign" "noalloc"
(** Returns -1, 0, or 1 when the argument is respectively negative, null, or
    positive.
 *)

val min: t -> t -> t
(** Returns the minimum of its arguments. *)

val max: t -> t -> t
(** Returns the maximum of its arguments. *)

val hash: t -> int
(** Hashes a number.
    This functions gives the same result as OCaml's polymorphic hashing
    function.
    The result is consistent with equality: if [a] = [b], then [hash a] =
    [hash b].
 *)

(** {1 Elementary number theory} *)

external gcd: t -> t -> t = "ml_z_gcd"
(** Greatest common divisor. 
    The result is always positive.
    Raises a [Division_by_zero] is either argument is null.
*)

val gcdext: t -> t -> (t * t * t)
(** [gcd_ext u v] returns [(g,s,t)]  where [g] is the greatest common divisor
    and [g=us+vt].
    [g] is always positive.
    Raises a [Division_by_zero] is either argument is null.
 *)

val lcm: t -> t -> t
(** 
    Least common multiple.
    The result is always positive.
    Raises a [Division_by_zero] is either argument is null.
 *)

external powm: t -> t -> t -> t = "ml_z_powm"
(** [powm base exp mod] computes [base]^[exp] modulo [mod].
    Negative [exp] are supported, in which case ([base]^-1)^(-[exp]) modulo 
    [mod] is computed.
    However, if [exp] is negative but [base] has no inverse modulo [mod], then
    a [Division_by_zero] is raised.
 *)

external invert: t -> t -> t = "ml_z_invert"
(** [invert base mod] returns the inverse of [base] modulo [mod].
    Raises a [Division_by_zero] if [base] is not invertible modulo [mod].
 *)

external probab_prime: t -> int -> int = "ml_z_probab_prime"
(** [probab_prime x r] returns 0 if [x] is definitely composite,
    1 if [x] is probably prime, and 2 if [x] is definitely prime.
    The [r] argument controls how many Miller-Rabin probabilistic
    primality tests are performed (5 to 10 is a reasonable value).
 *)

external nextprime: t -> t = "ml_z_nextprime"
(** Returns the next prime greater than the argument.
    The result is only prime with very high probability.
 *)


(** {1 Powers} *)

external pow: t -> int -> t = "ml_z_pow"
(** [pow base exp] raises [base] to the [exp] power.
    [exp] must be non-negative.
    Note that only exponents fitting in a machine integer are supported, as
    larger exponents would surely make the result's size overflow the 
    address space.
 *)

external sqrt: t -> t = "ml_z_sqrt"
(** Returns the square root. The result is truncated. 
    Raises an [Invalid_argument] on negative arguments.
 *)

external sqrt_rem: t -> (t * t) = "ml_z_sqrt_rem"
(** Returns the square root truncated, and the remainder. 
    Raises an [Invalid_argument] on negative arguments.
 *)

external root: t -> int -> t = "ml_z_root"
(** [root base n] computes the [n]-th root of [exp].
    [n] must be non-negative.
 *)

external perfect_power: t -> bool = "ml_z_perfect_power"
(** True if the argument has the form [a^b], with [b>1] *)

external perfect_square: t -> bool = "ml_z_perfect_square"
(** True if the argument has the form [a^2]. *)


(** {1 Representation} *)

external size: t -> int = "ml_z_size" "noalloc"
(** Returns the number of machine words used to represent the number. *)

external extract: t -> int -> int -> t = "ml_z_extract"
(** [extract a off len] returns a non-negative number corresponding to bits 
    [off] to [off]+[len]-1 of [b].
    Negative [a] are considered in infinite-length 2's complement
    representation.
 *)

val signed_extract: t -> int -> int -> t
(** [signed_extract a off len] extracts bits [off] to [off]+[len]-1 of [b],
    as [extract] does, then sign-extends bit [len-1] of the result
    (that is, bit [off + len - 1] of [a]).  The result is between
    [- 2{^[len]-1}] (included) and [2{^[len]-1}] excluded, 
    and equal to [extract a off len] modulo [2{^len}].
 *)

external to_bits: t -> string = "ml_z_to_bits"
(** Returns a binary representation of the argument.
    The string result should be interpreted as a sequence of bytes,
    corresponding to the binary representation of the absolute value of 
    the argument in little endian ordering.
    The sign is not stored in the string.
 *)

external of_bits: string -> t = "ml_z_of_bits"
(** Constructs a number from a binary string representation.
    The string is interpreted as a sequence of bytes in little endian order,
    and the result is always positive.
    We have the identity: [of_bits (to_bits x) = abs x].
    However, we can have [to_bits (of_bits s) <> s] due to the presence of
    trailing zeros in s.
 *)


(** {1 Prefix and infix operators} *)

(**
   Classic (and less classic) prefix and infix [int] operators are 
   redefined on [t].

   This makes it easy to typeset expressions.
   Using OCaml 3.12's local open, you can simply write
   [Z.(~$2 + ~$5 * ~$10)].
 *)

external (~-): t -> t = "ml_z_neg" "ml_as_z_neg"
(** Negation [neg]. *)

external (~+): t -> t = "%identity"
(** Identity. *)

external (+): t -> t -> t = "ml_z_add" "ml_as_z_add"
(** Addition [add]. *)

external (-): t -> t -> t = "ml_z_sub" "ml_as_z_sub"
(** Subtraction [sub]. *)

external ( * ): t -> t -> t = "ml_z_mul" "ml_as_z_mul"
(** Multiplication [mul]. *)

external (/): t -> t -> t = "ml_z_div" "ml_as_z_div"
(** Truncated division [div]. *)

external (/>): t -> t -> t = "ml_z_cdiv"
(** Ceiling division [cdiv]. *)

external (/<): t -> t -> t = "ml_z_fdiv"
(** Flooring division [fdiv]. *)

external (/|): t -> t -> t = "ml_z_divexact"
(** Exact division [div_exact]. *)

external (mod): t -> t -> t = "ml_z_rem" "ml_as_z_rem"
(** Remainder [rem]. *)

external (land): t -> t -> t = "ml_z_logand" "ml_as_z_logand"
(** Bit-wise logical and [logand]. *)

external (lor): t -> t -> t = "ml_z_logor" "ml_as_z_logor"
(** Bit-wise logical inclusive or [logor]. *)

external (lxor): t -> t -> t = "ml_z_logxor" "ml_as_z_logxor"
(** Bit-wise logical exclusive or [logxor]. *)

external (~!): t -> t = "ml_z_lognot" "ml_as_z_lognot"
(** Bit-wise logical negation [lognot]. *)

external (lsl): t -> int -> t = "ml_z_shift_left" "ml_as_z_shift_left"
(** Bit-wise shift to the left [shift_left]. *)

external (asr): t -> int -> t = "ml_z_shift_right" "ml_as_z_shift_right"
(** Bit-wise shift to the right [shift_right]. *)

external (~$): int -> t = "%identity" 
(** Conversion from [int] [of_int]. *)

external ( ** ): t -> int -> t = "ml_z_pow"
(** Power [pow]. *)

(** {1 Miscellaneous} *)

val version: string
(** Library version (this file refers to version ["1.2.1"]). *)