/usr/include/IceUtil/Cache.h is in libzeroc-ice35-dev 3.5.1-5.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | // **********************************************************************
//
// Copyright (c) 2003-2013 ZeroC, Inc. All rights reserved.
//
// This copy of Ice is licensed to you under the terms described in the
// ICE_LICENSE file included in this distribution.
//
// **********************************************************************
#ifndef ICE_UTIL_CACHE_H
#define ICE_UTIL_CACHE_H
#include <IceUtil/Handle.h>
#include <IceUtil/Mutex.h>
#include <IceUtil/CountDownLatch.h>
#include <map>
namespace IceUtil
{
//
// An abstraction to efficiently populate a Cache, without holding
// a lock while loading from a database.
//
template<typename Key, typename Value>
class Cache
{
public:
//
// Latch and CacheValue are implementation details;
// application code should not use them.
//
struct Latch : public IceUtilInternal::CountDownLatch
{
Latch() :
IceUtilInternal::CountDownLatch(1),
useCount(0)
{
}
int useCount;
};
struct CacheValue
{
CacheValue(const Handle<Value>& o) :
obj(o),
latch(0)
{
}
Handle<Value> obj;
Latch* latch;
};
typedef typename std::map<Key, CacheValue>::iterator Position;
Handle<Value> getIfPinned(const Key&, bool = false) const;
void unpin(Position);
void clear();
size_t size() const;
bool pin(const Key&, const Handle<Value>&);
Handle<Value> pin(const Key&);
Handle<Value> putIfAbsent(const Key&, const Handle<Value>&);
protected:
virtual Handle<Value> load(const Key&) = 0;
virtual void pinned(const Handle<Value>&, Position)
{
}
virtual ~Cache()
{
}
private:
Handle<Value> pinImpl(const Key&, const Handle<Value>&);
typedef std::map<Key, CacheValue> CacheMap;
Mutex _mutex;
CacheMap _map;
};
template<typename Key, typename Value> Handle<Value>
Cache<Key, Value>::getIfPinned(const Key& key, bool wait) const
{
Mutex::Lock sync(_mutex);
for(;;)
{
typename CacheMap::const_iterator p = _map.find(key);
if(p != _map.end())
{
Handle<Value> result = (*p).second.obj;
if(result != 0 || wait == false)
{
return result;
}
//
// The object is being loaded: we wait
//
if(p->second.latch == 0)
{
const_cast<CacheValue&>(p->second).latch = new Latch;
}
Latch* latch = p->second.latch;
++latch->useCount;
sync.release();
latch->await();
sync.acquire();
if(--latch->useCount == 0)
{
delete latch;
}
//
// Try again
//
}
else
{
return 0;
}
}
}
template<typename Key, typename Value> void
Cache<Key, Value>::unpin(typename Cache::Position p)
{
//
// There is no risk to erase a 'being loaded' position,
// since such position never got outside yet!
//
Mutex::Lock sync(_mutex);
_map.erase(p);
}
template<typename Key, typename Value> void
Cache<Key, Value>::clear()
{
//
// Not safe during a pin!
//
Mutex::Lock sync(_mutex);
_map.clear();
}
template<typename Key, typename Value> size_t
Cache<Key, Value>::size() const
{
Mutex::Lock sync(_mutex);
return _map.size();
}
template<typename Key, typename Value> bool
Cache<Key, Value>::pin(const Key& key, const Handle<Value>& obj)
{
Mutex::Lock sync(_mutex);
std::pair<typename CacheMap::iterator, bool> ir =
#ifdef _MSC_VER
_map.insert(CacheMap::value_type(key, CacheValue(obj)));
#else
_map.insert(typename CacheMap::value_type(key, CacheValue(obj)));
#endif
if(ir.second)
{
pinned(obj, ir.first);
}
return ir.second;
}
template<typename Key, typename Value> Handle<Value>
Cache<Key, Value>::pin(const Key& key)
{
return pinImpl(key, 0);
}
template<typename Key, typename Value> Handle<Value>
Cache<Key, Value>::putIfAbsent(const Key& key, const Handle<Value>& obj)
{
return pinImpl(key, obj);
}
template<typename Key, typename Value> Handle<Value>
Cache<Key, Value>::pinImpl(const Key& key, const Handle<Value>& newObj)
{
Latch* latch = 0;
Position p;
do
{
{
Mutex::Lock sync(_mutex);
//
// Clean up latch from previous loop
//
if(latch != 0)
{
if(--latch->useCount == 0)
{
delete latch;
}
latch = 0;
}
std::pair<typename CacheMap::iterator, bool> ir =
#if defined(_MSC_VER)
_map.insert(CacheMap::value_type(key, CacheValue(0)));
#else
_map.insert(typename CacheMap::value_type(key, CacheValue(0)));
#endif
if(ir.second == false)
{
CacheValue& val = ir.first->second;
if(val.obj != 0)
{
return val.obj;
}
//
// Otherwise wait
//
if(val.latch == 0)
{
//
// The first queued thread creates the latch
//
val.latch = new Latch;
}
latch = val.latch;
latch->useCount++;
}
p = ir.first;
}
if(latch != 0)
{
//
// Note: only the threads owning a "useCount" wait; upon wake-up,
// they loop back, release this useCount and possibly delete the latch
//
latch->await();
//
// p could be stale now, e.g. some other thread pinned and unpinned the
// object while we were waiting.
// So start over.
}
} while(latch != 0);
//
// Load
//
Handle<Value> obj;
try
{
obj = load(key);
}
catch(...)
{
Mutex::Lock sync(_mutex);
latch = p->second.latch;
p->second.latch = 0;
_map.erase(p);
if(latch != 0)
{
//
// It is necessary to call countDown() within the sync
// because countDown may not be atomic, and we don't
// want the "await" thread to delete the latch while
// this thread is still in countDown().
//
assert(latch->getCount() == 1);
latch->countDown();
}
throw;
}
Mutex::Lock sync(_mutex);
//
// p is still valid here -- nobody knows about it. See also unpin().
//
latch = p->second.latch;
p->second.latch = 0;
try
{
if(obj != 0)
{
p->second.obj = obj;
pinned(obj, p);
}
else
{
if(newObj == 0)
{
//
// pin() did not find the object
//
//
// The waiting threads will have to call load() to see by themselves.
//
_map.erase(p);
}
else
{
//
// putIfAbsent() inserts key/newObj
//
p->second.obj = newObj;
pinned(newObj, p);
}
}
}
catch(...)
{
if(latch != 0)
{
//
// Must be called within sync; see ->countDown() note above.
//
assert(latch->getCount() == 1);
latch->countDown();
}
throw;
}
if(latch != 0)
{
//
// Must be called within sync; see ->countDown() note above.
//
assert(latch->getCount() == 1);
latch->countDown();
}
return obj;
}
}
#endif
|