This file is indexed.

/usr/share/matita/lib/lambda/arity.ma is in matita 0.99.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(**************************************************************************)
(*       ___                                                              *)
(*      ||M||                                                             *)
(*      ||A||       A project by Andrea Asperti                           *)
(*      ||T||                                                             *)
(*      ||I||       Developers:                                           *)
(*      ||T||         The HELM team.                                      *)
(*      ||A||         http://helm.cs.unibo.it                             *)
(*      \   /                                                             *)
(*       \ /        This file is distributed under the terms of the       *)
(*        v         GNU General Public License Version 2                  *)
(*                                                                        *)
(**************************************************************************)

include "lambda/ext.ma".

(* ARITIES ********************************************************************)

(* An arity is a normal term representing the functional structure of a term.
 * Arities can be freely applied as lon as the result is typable in λ→.
 * we encode an arity with a family of meta-linguistic functions typed by λ→
 * Such a family contains one member for each type of λ→ 
 *)

(* type of arity members ******************************************************)

(* the type of an arity member *)
inductive MEM: Type[0] ≝
   | TOP: MEM
   | FUN: MEM → MEM → MEM
.

definition pred ≝ λC. match C with
   [ TOP     ⇒ TOP
   | FUN _ A ⇒ A
   ].

definition decidable_MEq: ∀C1,C2:MEM. (C1 = C2) + (C1 ≠ C2).
#C1 (elim C1) -C1
   [ #C2 elim C2 -C2
     [ /2/
     | #B2 #A2 #_ #_ @inr @nmk #false destruct
     ]
   | #B1 #A1 #IHB1 #IHA1 #C2 elim C2 -C2
     [ @inr @nmk #false destruct
     | #B2 #A2 #_ #_ elim (IHB1 B2) -IHB1 #HB
       [ elim (IHA1 A2) - IHA1 #HA
         [ /2/ | @inr @nmk #false destruct elim HA /2/ ]
       | @inr @nmk #false destruct elim HB /2/
   ]
qed.

lemma fun_neq_sym: ∀A,C,B. pred C ≠ A → C ≠ FUN B A.
#A #C #B #HA elim HA -HA #HA @nmk #H @HA -HA >H //
qed. 

(* arity members **************************************************************)

(* the arity members of type TOP *)
inductive Top: Type[0] ≝
   | SORT: Top
. 

(* the arity members of type A *)
let rec Mem A ≝ match A with
   [ TOP     ⇒ Top
   | FUN B A ⇒ Mem B → Mem A
   ].

(* the members of the arity "sort" *)
let rec sort_mem A ≝ match A return λA. Mem A with
   [ TOP     ⇒ SORT
   | FUN B A ⇒ λ_.sort_mem A
   ]. 

(* arities ********************************************************************)

(* the type of arities *)
definition Arity ≝ ∀A. Mem A.

(* the arity "sort" *)
definition sort ≝ λA. sort_mem A.

(* the arity "constant" *)
definition const: ∀B. Mem B → Arity.
#B #x #A. elim (decidable_MEq B A) #H [ elim H @x | @(sort_mem A) ]
qed.

(* application of arities *)
definition aapp: MEM → Arity → Arity → Arity  ≝ λB,a,b,C. a (FUN B C) (b B).

(* abstraction of arities *)
definition aabst: (Arity → Arity) → Arity ≝
   λf,C. match C return λC. Mem C with
   [ TOP     ⇒ sort_mem TOP
   | FUN B A ⇒ λx. f (const B x) A
   ].

(* extensional equality of arity members **************************************)

(* Extensional equality of arity members (extensional equalty of functions).
 * The functions may not respect extensional equality so reflexivity fails
 * in general but may hold for specific arity members.
 *)
let rec ameq A ≝ match A return λA. Mem A → Mem A → Prop with
   [ TOP     ⇒ λa1,a2. a1 = a2
   | FUN B A ⇒ λa1,a2. ∀b1,b2. ameq B b1 b2 → ameq A (a1 b1) (a2 b2)
   ].

interpretation
   "extensional equality (arity member)"
   'Eq1 A a1 a2 = (ameq A a1 a2).

(* reflexivity of extensional equality for an arity member *)
definition invariant_mem ≝ λA,m. m ≅^A m.

interpretation
   "invariance (arity member)"
   'Invariant1 a A = (invariant_mem A a).


interpretation
   "invariance (arity member with implicit type)"
   'Invariant a = (invariant_mem ? a).

lemma symmetric_ameq: ∀A. symmetric ? (ameq A).
#A elim A -A /4/
qed.

lemma transitive_ameq: ∀A. transitive ? (ameq A).
#A elim A -A /5/
qed.

lemma invariant_sort_mem: ∀A. ! sort_mem A.
#A elim A normalize //
qed.

axiom const_eq: ∀A,x. const A x A ≅^A x.

axiom const_neq: ∀A,B,x. A ≠ B → const A x B ≅^B (sort_mem B).

(* extensional equality of arities ********************************************)

definition aeq: Arity → Arity → Prop ≝ λa1,a2. ∀A. a1 A ≅^A a2 A.

interpretation
   "extensional equality (arity)"
   'Eq a1 a2 = (aeq a1 a2).

definition invariant: Arity → Prop ≝ λa. a ≅ a.

interpretation
   "invariance (arity)"
   'Invariant a = (invariant a).

lemma symmetric_aeq: symmetric … aeq.
/2/ qed.

lemma transitive_aeq: transitive … aeq.
/2/ qed.

lemma const_comp: ∀A,x1,x2. x1 ≅^A x2 → const … x1 ≅ const … x2.
#A #x1 #x2 #Hx #C elim (decidable_MEq A C) #H
   [ <H @transitive_ameq; [2: @const_eq | skip ]
        @transitive_ameq; [2: @Hx | skip ]
        @symmetric_ameq //
   | @transitive_ameq; [2: @(const_neq … H) | skip ]
     @transitive_ameq; [2: @invariant_sort_mem | skip ]
     @symmetric_ameq /2/
   ]
qed.

lemma aapp_comp: ∀C,a1,a2,b1,b2. a1 ≅ a2 → b1 ≅ b2 → aapp C a1 b1 ≅ aapp C a2 b2.
#C #a1 #a2 #b1 #b2 #Ha #Hb #D @(Ha (FUN C D)) //
qed.

lemma aabst_comp: ∀f1,f2. (∀a1,a2. a1 ≅ a2 → f1 a1 ≅ f2 a2) →
                  aabst f1 ≅ aabst f2.
#f1 #f2 #H #C elim C -C // #B #A #_ #_ #b1 #b2 #Hb @H /2/
qed.

lemma invariant_sort: ! sort.
normalize //
qed.

(* "is a constant arity" *)
definition isc ≝ λa,A. const ? (a A) ≅ a.

lemma isc_sort: ∀A. isc sort A.
#A #C elim (decidable_MEq A C) #H [ <H // | /2 by const_neq/ ].
qed.

lemma isc_aapp: ∀B,A,b,a. ! b B → isc a A → isc (aapp B a b) (pred A).
#B #A #b #a #Hb #Ha #C elim (decidable_MEq (pred A) C) #H [ >H // ]
@transitive_ameq; [2: @(const_neq … H) | skip ]
lapply (transitive_ameq ????? (Ha (FUN B C))) -Ha [3: #Ha @Ha // |2: skip ]
@symmetric_ameq @const_neq /2/
qed.

(* extensional equality of arity contexts *************************************)

definition aceq ≝ λE1,E2. all2 … aeq E1 E2.

interpretation
   "extensional equality (arity context)"
   'Eq E1 E2 = (aceq E1 E2).

definition invariant_env: list Arity → Prop ≝ λE. E ≅ E.

interpretation
   "invariance (arity context)"
   'Invariant E = (invariant_env E).

lemma symmetric_aceq: symmetric … aceq.
/2/ qed.

lemma nth_sort_comp: ∀E1,E2. E1 ≅ E2 →
                     ∀i. nth i ? E1 sort ≅ nth i ? E2 sort.
#E1 #E2 #H #i @(all2_nth … aeq) //
qed.