/usr/share/pyshared/tvtk/tools/mlab.py is in mayavi2 4.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 | """A module that provides Matlab like 3d visualization functionality.
The general idea is shamelessly stolen from the `high-level API`_
provided by Octaviz_. Some of the test cases and demos are also
translated from there!
.. _Octaviz: http://octaviz.sourceforge.net/
.. _high-level API: http://octaviz.sourceforge.net/index.php?page=manpagesq
The implementation provided here is object oriented and each
visualization capability is implemented as a class that has traits.
So each of these may be configured. Each visualization class derives
(ultimately) from MLabBase which is responsible for adding/removing
its actors into the render window. The classes all require that the
RenderWindow be a `pyface.tvtk.scene.Scene` instance (this constraint
can be relaxed if necessary later on).
This module offers the following broad class of functionality:
`Figure`
This basically manages all of the objects rendered. Just like
figure in any Matlab like environment. A convenience function
called `figure` may be used to create a nice Figure instance.
`Glyphs`
This and its subclasses let one place glyphs at points specified as
inputs. The subclasses are: `Arrows`, `Cones`, `Cubes`,
`Cylinders`, `Spheres`, and `Points`.
`Line3`
Draws lines between the points specified at initialization time.
`Outline`
Draws an outline for the contained objects.
`Title`
Draws a title for the entire figure.
`LUTBase`
Manages a lookup table and a scalar bar (legend) for it. This is
subclassed by all classes that need a LUT.
`SurfRegular`
MayaVi1's imv.surf like functionality that plots surfaces given x
(1D), y(1D) and z (or a callable) arrays.
`SurfRegularC`
Also plots contour lines.
`TriMesh`
Given triangle connectivity and points, plots a mesh of them.
`FancyTriMesh`
Plots the mesh using tubes and spheres so its fancier.
`Mesh`
Given x, y generated from numpy.mgrid, and a z to go with it. Along
with optional scalars. This class builds the triangle connectivity
(assuming that x, y are from numpy.mgrid) and builds a mesh and
shows it.
`FancyMesh`
Like mesh but shows the mesh using tubes and spheres.
`Surf`
This generates a surface mesh just like Mesh but renders the mesh as
a surface.
`Contour3`
Shows contour for a mesh.
`ImShow`
Allows one to view large numeric arrays as image data using an image
actor. This is just like MayaVi1's `mayavi.tools.imv.viewi`.
To see nice examples of all of these look at the `test_*` functions at
the end of this file. Here is a quick example that uses these test
functions::
>>> from tvtk.tools import mlab
>>> f = mlab.figure()
>>> mlab.test_surf(f) # Create a spherical harmonic.
>>> f.pop() # Remove it.
>>> mlab.test_molecule(f) # Show a caffeine molecule.
>>> f.renwin.reset_zoom() # Scale the view.
>>> f.pop() # Remove this.
>>> mlab.test_lines(f) # Show pretty lines.
>>> f.clear() # Remove all the stuff on screen.
"""
# Author: Prabhu Ramachandran <prabhu_r@users.sf.net>
# Copyright (c) 2005-2007, Enthought, Inc.
# License: BSD Style.
import numpy
from traits.api import HasTraits, List, Instance, Any, Float, Bool, \
Str, Trait, Int
from pyface.api import GUI
from tvtk.api import tvtk
from tvtk.tvtk_base import TVTKBase, vtk_color_trait
from tvtk.tools import ivtk
# Set this to False to not use LOD Actors.
USE_LOD_ACTOR = True
VTK_VER = float(tvtk.Version().vtk_version[:3])
######################################################################
# Utility functions.
######################################################################
def _make_actor(**kwargs):
"""Return a TVTK actor. If `mlab.USE_LOD_ACTOR` is `True` it
returns an LODActor if not it returns a normal actor.
"""
if USE_LOD_ACTOR:
r = tvtk.LODActor(number_of_cloud_points=1500)
r.property.point_size = 2.0
r.set(**kwargs)
return r
else:
return tvtk.Actor(**kwargs)
def _create_structured_points_direct(x, y, z=None):
"""Creates a StructuredPoints object given input data in the form
of numpy arrays.
Input Arguments:
x -- Array of x-coordinates. These should be regularly spaced.
y -- Array of y-coordinates. These should be regularly spaced.
z -- Array of z values for the x, y values given. The values
should be computed such that the z values are computed as x
varies fastest and y next. If z is None then no scalars are
associated with the structured points. Only the structured
points data set is created.
"""
nx = len(x)
ny = len(y)
if z is not None:
nz = numpy.size(z)
assert nx*ny == nz, "len(x)*len(y) != len(z)"\
"You passed nx=%d, ny=%d, nz=%d"%(nx, ny, nz)
xmin, ymin = x[0], y[0]
dx, dy= (x[1] - x[0]), (y[1] - y[0])
sp = tvtk.StructuredPoints(dimensions=(nx,ny,1),
origin=(xmin, ymin, 0),
spacing=(dx, dy, 1))
if z is not None:
sp.point_data.scalars = numpy.ravel(z)
sp.point_data.scalars.name = 'scalars'
return sp
def sampler(xa, ya, func, *args, **kwargs):
"""Samples a function at an array of ordered points (with equal
spacing) and returns an array of scalars as per VTK's requirements
for a structured points data set, i.e. x varying fastest and y
varying next.
Input Arguments:
xa -- Array of x points.
ya -- Array if y points.
func -- function of x, and y to sample.
args -- additional positional arguments for func()
(default is empty)
kwargs -- a dict of additional keyword arguments for func()
(default is empty)
"""
ret = func(xa[:,None] + numpy.zeros_like(ya),
numpy.transpose(ya[:,None] + numpy.zeros_like(xa)),
*args, **kwargs
)
return numpy.transpose(ret)
def _check_sanity(x, y, z):
"""Checks the given arrays to see if they are suitable for
surf."""
msg = "Only ravelled or 2D arrays can be viewed! "\
"This array has shape %s" % str(z.shape)
assert len(z.shape) <= 2, msg
if len( z.shape ) == 2:
msg = "len(x)*len(y) != len(z.flat). You passed "\
"nx=%d, ny=%d, shape of z=%s"%(len(x), len(y), z.shape)
assert z.shape[0]*z.shape[1] == len(x)*len(y), msg
msg = "length of y(%d) and x(%d) must match shape of z "\
"%s. (Maybe you need to swap x and y?)"%(len(y), len(x),
str(z.shape))
assert z.shape == (len(y), len(x)), msg
def squeeze(a):
"Returns a with any ones from the shape of a removed"
a = numpy.asarray(a)
b = numpy.asarray(a.shape)
val = numpy.reshape(a,
tuple(numpy.compress(numpy.not_equal(b, 1), b)))
return val
def make_surf_actor(x, y, z, warp=1, scale=[1.0, 1.0, 1.0],
make_actor=True, *args, **kwargs):
"""Creates a surface given regularly spaced values of x, y and the
corresponding z as arrays. Also works if z is a function.
Currently works only for regular data - can be enhanced later.
Parameters
----------
x -- Array of x points (regularly spaced)
y -- Array if y points (regularly spaced)
z -- A 2D array for the x and y points with x varying fastest
and y next. Also will work if z is a callable which supports
x and y arrays as the arguments.
warp -- If true, warp the data to show a 3D surface
(default = 1).
scale -- Scale the x, y and z axis as per passed values.
Defaults to [1.0, 1.0, 1.0].
make_actor -- also create actors suitably (default True)
args -- additional positional arguments for func()
(default is empty)
kwargs -- a dict of additional keyword arguments for func()
(default is empty)
"""
if callable(z):
zval = numpy.ravel(sampler(x, y, z, *args, **kwargs))
x, y = squeeze(x), squeeze(y)
else:
x, y = squeeze(x), squeeze(y)
_check_sanity(x, y, z)
zval = numpy.ravel(z)
assert len(zval) > 0, "z is empty - nothing to plot!"
xs = x*scale[0]
ys = y*scale[1]
data = _create_structured_points_direct(xs, ys, zval)
if not make_actor:
return data
if warp:
geom_f = tvtk.ImageDataGeometryFilter(input=data)
warper = tvtk.WarpScalar(input=geom_f.output,
scale_factor=scale[2])
normals = tvtk.PolyDataNormals(input=warper.output,
feature_angle=45)
mapper = tvtk.PolyDataMapper(input=normals.output,
scalar_range=(min(zval),max(zval)))
else:
mapper = tvtk.PolyDataMapper(input=data,
scalar_range=(min(zval),max(zval)))
actor = _make_actor(mapper=mapper)
return data, actor
def make_triangle_polydata(triangles, points, scalars=None):
t = numpy.asarray(triangles, 'l')
assert t.shape[1] == 3, "The list of polygons must be Nx3."
if scalars is not None:
assert len(points) == len(numpy.ravel(scalars))
pd = tvtk.PolyData(points=points, polys=t)
if scalars is not None:
pd.point_data.scalars = numpy.ravel(scalars)
pd.point_data.scalars.name = 'scalars'
return pd
def make_triangles_points(x, y, z, scalars=None):
"""Given x, y, and z co-ordinates made using numpy.mgrid and
optional scalars. This function returns triangles and points
corresponding to a mesh formed by them.
Parameters
----------
- x : array
A list of x coordinate values formed using numpy.mgrid.
- y : array
A list of y coordinate values formed using numpy.mgrid.
- z : array
A list of z coordinate values formed using numpy.mgrid.
- scalars : array (optional)
Scalars to associate with the points.
"""
assert len(x.shape) == 2, "Array x must be 2 dimensional."
assert len(y.shape) == 2, "Array y must be 2 dimensional."
assert len(z.shape) == 2, "Array z must be 2 dimensional."
assert x.shape == y.shape, "Arrays x and y must have same shape."
assert y.shape == z.shape, "Arrays y and z must have same shape."
nx, ny = x.shape
i, j = numpy.mgrid[0:nx-1,0:ny-1]
i, j = numpy.ravel(i), numpy.ravel(j)
t1 = i*ny+j, (i+1)*ny+j, (i+1)*ny+(j+1)
t2 = (i+1)*ny+(j+1), i*ny+(j+1), i*ny+j
nt = len(t1[0])
triangles = numpy.zeros((nt*2, 3), 'l')
triangles[0:nt,0], triangles[0:nt,1], triangles[0:nt,2] = t1
triangles[nt:,0], triangles[nt:,1], triangles[nt:,2] = t2
points = numpy.zeros((nx, ny, 3), 'd')
points[:,:,0], points[:,:,1], points[:,:,2] = x, y, z
points = numpy.reshape(points, (nx*ny, 3))
return triangles, points
######################################################################
# `MLabBase` class.
######################################################################
class MLabBase(HasTraits):
# List of actors.
actors = List(TVTKBase)
# Renderwindow to render into.
renwin = Any
def update(self):
self.renwin.render()
def render(self):
if self.renwin:
self.renwin.render()
def _renwin_changed(self, old, new):
if old:
old.remove_actors(self.actors)
old.render()
if new:
new.add_actors(self.actors)
new.render()
def _actors_changed(self, old, new):
self._handle_actors(old, new)
def _actors_items_changed(self, list_event):
self._handle_actors(list_event.removed, list_event.added)
def _handle_actors(self, removed, added):
rw = self.renwin
if rw:
rw.remove_actors(removed)
rw.add_actors(added)
rw.render()
######################################################################
# `Glyphs` class.
######################################################################
class Glyphs(MLabBase):
# The source glyph which is placed at various locations.
glyph_source = Any
# A Glyph3D instance replicates the glyph_sources at various
# points.
glyph = Instance(tvtk.Glyph3D, (), {'vector_mode':'use_vector',
'scale_mode':'data_scaling_off'})
# Color of the glyphs.
color = vtk_color_trait((1.0, 1.0, 1.0))
def __init__(self, points, vectors=None, scalars=None, **traits):
super(Glyphs, self).__init__(**traits)
if vectors is not None:
assert len(points) == len(vectors)
if scalars is not None:
assert len(points) == len(scalars)
self.points = points
self.vectors = vectors
self.scalars = scalars
polys = numpy.arange(0, len(points), 1, 'l')
polys = numpy.reshape(polys, (len(points), 1))
pd = tvtk.PolyData(points=points, polys=polys)
if self.vectors is not None:
pd.point_data.vectors = vectors
pd.point_data.vectors.name = 'vectors'
if self.scalars is not None:
pd.point_data.scalars = scalars
pd.point_data.scalars.name = 'scalars'
self.poly_data = pd
self.glyph.input = pd
if self.glyph_source:
self.glyph.source = self.glyph_source.output
mapper = tvtk.PolyDataMapper(input=self.glyph.output)
actor = _make_actor(mapper=mapper)
actor.property.color = self.color
self.actors.append(actor)
def update(self):
self.poly_data.update()
self.renwin.render()
def _color_changed(self, val):
if self.actors:
self.actors[0].property.color = val
self.render()
def _glyph_source_changed(self, val):
self.glyph.source = val.output
self.render()
######################################################################
# `Arrows` class.
######################################################################
class Arrows(Glyphs):
# The arrow glyph which is placed at various locations.
glyph_source = Instance(tvtk.ArrowSource, ())
######################################################################
# `Cones` class.
######################################################################
class Cones(Glyphs):
# The cone glyph which is placed at various locations.
glyph_source = Instance(tvtk.ConeSource, ())
# Radius of the cone.
radius = Float(0.05, desc='radius of the cone')
def __init__(self, points, vectors=None, scalars=None, **traits):
super(Cones, self).__init__(points, vectors, scalars, **traits)
self._radius_changed(self.radius)
def _radius_changed(self, val):
self.glyph_source.radius = val
self.render()
######################################################################
# `Cubes` class.
######################################################################
class Cubes(Glyphs):
# The cube glyph which is placed at various locations.
glyph_source = Instance(tvtk.CubeSource, ())
# The side length of the cube.
length = Float(0.05, desc='side length of the cube')
def __init__(self, points, vectors=None, scalars=None, **traits):
super(Cubes, self).__init__(points, vectors, scalars, **traits)
self._radius_changed(self.radius)
def _length_changed(self, val):
self.glyph_source.x_length = val
self.glyph_source.y_length = val
self.glyph_source.z_length = val
self.render()
######################################################################
# `Cylinders` class.
######################################################################
class Cylinders(Glyphs):
# The cylinder glyph which is placed at various locations.
glyph_source = Instance(tvtk.CylinderSource, ())
######################################################################
# `Spheres` class.
######################################################################
class Spheres(Glyphs):
# The sphere which is placed at various locations.
glyph_source = Instance(tvtk.SphereSource, (),
{'phi_resolution':15,
'theta_resolution':30})
# Radius of the sphere.
radius = Float(0.05, desc='radius of the sphere')
def __init__(self, points, vectors=None, scalars=None, **traits):
super(Spheres, self).__init__(points, vectors, scalars, **traits)
self._radius_changed(self.radius)
def _radius_changed(self, val):
self.glyph_source.radius = val
self.render()
######################################################################
# `Points` class.
######################################################################
class Points(Glyphs):
# The point which is placed at various locations.
glyph_source = Instance(tvtk.PointSource, (),
{'radius':0, 'number_of_points':1})
######################################################################
# `Line3` class.
######################################################################
class Line3(MLabBase):
# Radius of the tube filter.
radius = Float(0.01, desc='radius of the tubes')
# Should a tube filter be used or not.
use_tubes = Bool(True,
desc='specifies if the tube filter should be used')
# The Tube filter used to generate tubes from the lines.
tube_filter = Instance(tvtk.TubeFilter, (), {'number_of_sides':6})
# Color of the actor.
color = vtk_color_trait((1.0, 1.0, 1.0))
def __init__(self, points, **traits):
super(MLabBase, self).__init__(**traits)
assert len(points[0]) == 3, "The points must be 3D"
self.points = points
np = len(points) - 1
lines = numpy.zeros((np, 2), 'l')
lines[:,0] = numpy.arange(0, np-0.5, 1, 'l')
lines[:,1] = numpy.arange(1, np+0.5, 1, 'l')
pd = tvtk.PolyData(points=points, lines=lines)
self.poly_data = pd
mapper = tvtk.PolyDataMapper()
self.mapper = mapper
tf = self.tube_filter
tf.radius = self.radius
if self.use_tubes:
tf.input = pd
mapper.input = tf.output
a = _make_actor(mapper=mapper)
a.property.color = self.color
self.actors.append(a)
def _radius_changed(self, val):
self.tube_filter.radius = val
self.render()
def _use_tubes_changed(self, val):
if val:
tf = self.tube_filter
tf.input = self.poly_data
self.mapper.input = tf.output
else:
self.mapper.input = self.poly_data
self.render()
def _color_changed(self, val):
if self.actors:
self.actors[0].property.color = val
self.render()
######################################################################
# `Outline` class.
######################################################################
class Outline(MLabBase):
# The axis instance to use to annotate the outline
axis = Instance(tvtk.CubeAxesActor2D, (),
{'label_format':"%4.2g", 'fly_mode':"outer_edges",
'font_factor':1.25, 'number_of_labels':5,
'corner_offset':0.0, 'scaling':0})
# The outline source.
outline = Instance(tvtk.OutlineSource, ())
def __init__(self, **traits):
super(Outline, self).__init__(**traits)
out_mapper = tvtk.PolyDataMapper(input=self.outline.output)
out_actor = _make_actor(mapper=out_mapper)
axis = self.axis
if hasattr(axis, 'view_prop'):
axis.view_prop = out_actor
else:
axis.prop = out_actor
self.actors.extend([out_actor, axis])
def update(self):
if self.renwin:
rw = self.renwin
v1, v2 = [x.visibility for x in self.actors]
self.actors[0].visibility = 0
self.actors[1].visibility = 0
rw.render()
bounds = rw.renderer.compute_visible_prop_bounds()
self.outline.bounds = bounds
rw.render()
self.actors[0].visibility = v1
self.actors[1].visibility = v2
def _renwin_changed(self, old, new):
super(Outline, self)._renwin_changed(old, new)
if old:
old.on_trait_change(self.update, 'actor_added', remove=True)
old.on_trait_change(self.update, 'actor_removed', remove=True)
if new:
self.axis.camera = new.renderer.active_camera
new.on_trait_change(self.update, 'actor_added')
new.on_trait_change(self.update, 'actor_removed')
######################################################################
# `Title` class.
######################################################################
class Title(MLabBase):
# Text of the title.
text = Str('Title', desc='text of the title')
# The text actor that renders the title.
text_actor = Instance(tvtk.TextActor, ())
def __init__(self, **traits):
super(Title, self).__init__(**traits)
ta = self.text_actor
if VTK_VER > 5.1:
ta.set(text_scale_mode='prop', height=0.05, input=self.text)
else:
ta.set(scaled_text=True, height=0.05, input=self.text)
pc = ta.position_coordinate
pc.coordinate_system = 'normalized_viewport'
pc.value = 0.25, 0.925, 0.0
self.actors.append(self.text_actor)
def _text_changed(self, val):
self.text_actor.input = val
self.render()
######################################################################
# `LUTBase` class.
######################################################################
class LUTBase(MLabBase):
# The choices for the lookuptable
lut_type = Trait('red-blue', 'red-blue', 'blue-red',
'black-white', 'white-black',
desc='the type of the lookup table')
# The LookupTable instance.
lut = Instance(tvtk.LookupTable, ())
# The scalar bar.
scalar_bar = Instance(tvtk.ScalarBarActor, (),
{'orientation':'horizontal',
'width':0.8, 'height':0.17})
# The scalar_bar widget.
scalar_bar_widget = Instance(tvtk.ScalarBarWidget, ())
# The legend name for the scalar bar.
legend_text = Str('Scalar', desc='the title of the legend')
# Turn on/off the visibility of the scalar bar.
show_scalar_bar = Bool(False,
desc='specifies if scalar bar is shown or not')
def __init__(self, **traits):
super(LUTBase, self).__init__(**traits)
self.lut.number_of_colors = 256
self._lut_type_changed(self.lut_type)
self.scalar_bar.set(lookup_table=self.lut,
title=self.legend_text)
pc = self.scalar_bar.position_coordinate
pc.coordinate_system = 'normalized_viewport'
pc.value = 0.1, 0.01, 0.0
self.scalar_bar_widget.set(scalar_bar_actor=self.scalar_bar,
key_press_activation=False)
def _lut_type_changed(self, val):
if val == 'red-blue':
hue_range = 0.0, 0.6667
saturation_range = 1.0, 1.0
value_range = 1.0, 1.0
elif val == 'blue-red':
hue_range = 0.6667, 0.0
saturation_range = 1.0, 1.0
value_range = 1.0, 1.0
elif val == 'black-white':
hue_range = 0.0, 0.0
saturation_range = 0.0, 0.0
value_range = 0.0, 1.0
elif val == 'white-black':
hue_range = 0.0, 0.0
saturation_range = 0.0, 0.0
value_range = 1.0, 0.0
lut = self.lut
lut.set(hue_range=hue_range, saturation_range=saturation_range,
value_range=value_range, number_of_table_values=256,
ramp='sqrt')
lut.force_build()
self.render()
def _legend_text_changed(self, val):
self.scalar_bar.title = val
self.scalar_bar.modified()
self.render()
def _show_scalar_bar_changed(self, val):
if self.renwin:
self.scalar_bar_widget.enabled = val
self.renwin.render()
def _renwin_changed(self, old, new):
sbw = self.scalar_bar_widget
if old:
sbw.interactor = None
old.render()
if new:
sbw.interactor = new.interactor
sbw.enabled = self.show_scalar_bar
new.render()
super(LUTBase, self)._renwin_changed(old, new)
######################################################################
# `SurfRegular` class.
######################################################################
class SurfRegular(LUTBase):
def __init__(self, x, y, z, warp=1, scale=[1.0, 1.0, 1.0], f_args=(),
f_kwargs=None, **traits):
super(SurfRegular, self).__init__(**traits)
if f_kwargs is None:
f_kwargs = {}
data, actor = make_surf_actor(x, y, z, warp, scale, *f_args,
**f_kwargs)
self.data = data
mapper = actor.mapper
mapper.lookup_table = self.lut
self.lut.table_range = mapper.scalar_range
self.actors.append(actor)
######################################################################
# `SurfRegularC` class.
######################################################################
class SurfRegularC(LUTBase):
# Number of contours.
number_of_contours = Int(10, desc='number of contours values')
# The contour filter.
contour_filter = Instance(tvtk.ContourFilter, ())
def __init__(self, x, y, z, warp=1, scale=[1.0, 1.0, 1.0], f_args=(),
f_kwargs=None, **traits):
super(SurfRegularC, self).__init__(**traits)
if f_kwargs is None:
f_kwargs = {}
data, actor = make_surf_actor(x, y, z, warp, scale, *f_args,
**f_kwargs)
mapper = actor.mapper
mapper.lookup_table = self.lut
self.lut.table_range = mapper.scalar_range
self.data = data
dr = data.point_data.scalars.range
cf = self.contour_filter
cf.input = data
cf.generate_values(self.number_of_contours, dr[0], dr[1])
mapper = tvtk.PolyDataMapper(input=cf.output, lookup_table=self.lut)
cont_actor = _make_actor(mapper=mapper)
self.actors.extend([actor, cont_actor])
def _number_of_contours_changed(self, val):
dr = self.data.point_data.scalars.range
self.contour_filter.generate_values(val, dr[0], dr[1])
self.render()
######################################################################
# `TriMesh` class.
######################################################################
class TriMesh(LUTBase):
# Disables/enables scalar visibility.
scalar_visibility = Bool(False, desc='show scalar visibility')
# Representation of the mesh as surface or wireframe.
surface = Bool(False, desc='show as surface or wireframe')
# Color of the mesh.
color = vtk_color_trait((0.5, 1.0, 0.5))
def __init__(self, triangles, points, scalars=None, **traits):
"""
Parameters
----------
- triangles : array
This contains a list of vertex indices forming the triangles.
- points : array
Contains the list of points referred to in the triangle list.
- scalars : array (optional)
Scalars to associate with the points.
"""
super(TriMesh, self).__init__(**traits)
self.pd = make_triangle_polydata(triangles, points, scalars)
mapper = tvtk.PolyDataMapper(input=self.pd, lookup_table=self.lut,
scalar_visibility=self.scalar_visibility)
if scalars is not None:
rs = numpy.ravel(scalars)
dr = min(rs), max(rs)
mapper.scalar_range = dr
self.lut.table_range = dr
actor = _make_actor(mapper=mapper)
representation = 'w'
if self.surface:
representation = 's'
if representation == 'w':
actor.property.set(diffuse=0.0, ambient=1.0, color=self.color,
representation=representation)
else:
actor.property.set(diffuse=1.0, ambient=0.0, color=self.color,
representation=representation)
self.actors.append(actor)
def _scalar_visibility_changed(self, val):
if self.actors:
mapper = self.actors[0].mapper
mapper.scalar_visibility = val
self.render()
def _surface_changed(self, val):
if self.actors:
representation = 'w'
if val:
representation = 's'
actor = self.actors[0]
if representation == 'w':
actor.property.set(diffuse=0.0, ambient=1.0,
representation=representation)
else:
actor.property.set(diffuse=1.0, ambient=0.0,
representation=representation)
self.render()
def _color_changed(self, val):
if self.actors:
self.actors[0].property.color = val
self.render()
######################################################################
# `FancyTriMesh` class.
######################################################################
class FancyTriMesh(LUTBase):
"""Shows a mesh of triangles and draws the edges as tubes and
points as balls."""
# Disables/enables scalar visibility.
scalar_visibility = Bool(False, desc='show scalar visibility')
# Color of the mesh.
color = vtk_color_trait((0.5, 1.0, 0.5))
# The radius of the tubes.
tube_radius = Float(0.0, desc='radius of the tubes')
# The radius of the spheres.
sphere_radius = Float(0.0, desc='radius of the spheres')
# The TubeFilter used to make the tubes for the edges.
tube_filter = Instance(tvtk.TubeFilter, (),
{'vary_radius':'vary_radius_off',
'number_of_sides':6})
# The sphere source for the points.
sphere_source = Instance(tvtk.SphereSource, (),
{'theta_resolution':12,
'phi_resolution':12})
def __init__(self, triangles, points, scalars=None, **traits):
"""
Parameters
----------
- triangles : array
This contains a list of vertex indices forming the triangles.
- points : array
Contains the list of points referred to in the triangle list.
- scalars : array (optional)
Scalars to associate with the points.
"""
super(FancyTriMesh, self).__init__(**traits)
self.points = points
self.pd = make_triangle_polydata(triangles, points, scalars)
# Update the radii so the default is computed correctly.
self._tube_radius_changed(self.tube_radius)
self._sphere_radius_changed(self.sphere_radius)
scalar_vis = self.scalar_visibility
# Extract the edges and show the lines as tubes.
self.extract_filter = tvtk.ExtractEdges(input=self.pd)
extract_f = self.extract_filter
self.tube_filter.set(input=extract_f.output,
radius=self.tube_radius)
edge_mapper = tvtk.PolyDataMapper(input=self.tube_filter.output,
lookup_table=self.lut,
scalar_visibility=scalar_vis)
edge_actor = _make_actor(mapper=edge_mapper)
edge_actor.property.color = self.color
# Create the spheres for the points.
self.sphere_source.radius = self.sphere_radius
spheres = tvtk.Glyph3D(scaling=0, source=self.sphere_source.output,
input=extract_f.output)
sphere_mapper = tvtk.PolyDataMapper(input=spheres.output,
lookup_table=self.lut,
scalar_visibility=scalar_vis)
sphere_actor = _make_actor(mapper=sphere_mapper)
sphere_actor.property.color = self.color
if scalars is not None:
rs = numpy.ravel(scalars)
dr = min(rs), max(rs)
self.lut.table_range = dr
edge_mapper.scalar_range = dr
sphere_mapper.scalar_range = dr
self.actors.extend([edge_actor, sphere_actor])
def _scalar_visibility_changed(self, val):
if self.actors:
for i in self.actors:
i.mapper.scalar_visibility = val
self.render()
def _tube_radius_changed(self, val):
points = self.points
if val < 1.0e-9:
val = (max(numpy.ravel(points)) -
min(numpy.ravel(points)))/250.0
self.tube_radius = val
self.tube_filter.radius = val
self.render()
def _sphere_radius_changed(self, val):
points = self.points
if val < 1.0e-9:
val = (max(numpy.ravel(points)) -
min(numpy.ravel(points)))/100.0
self.sphere_radius = val
self.sphere_source.radius = val
self.render()
def _color_changed(self, val):
if self.actors:
self.actors[0].property.color = val
self.render()
######################################################################
# `Mesh` class.
######################################################################
class Mesh(TriMesh):
def __init__(self, x, y, z, scalars=None, **traits):
"""
Parameters
----------
- x : array
A list of x coordinate values formed using numpy.mgrid.
- y : array
A list of y coordinate values formed using numpy.mgrid.
- z : array
A list of z coordinate values formed using numpy.mgrid.
- scalars : array (optional)
Scalars to associate with the points.
"""
triangles, points = make_triangles_points(x, y, z, scalars)
super(Mesh, self).__init__(triangles, points, scalars, **traits)
######################################################################
# `FancyMesh` class.
######################################################################
class FancyMesh(FancyTriMesh):
def __init__(self, x, y, z, scalars=None, **traits):
"""
Parameters
----------
- x : array
A list of x coordinate values formed using numpy.mgrid.
- y : array
A list of y coordinate values formed using numpy.mgrid.
- z : array
A list of z coordinate values formed using numpy.mgrid.
- scalars : array (optional)
Scalars to associate with the points.
"""
triangles, points = make_triangles_points(x, y, z, scalars)
super(FancyMesh, self).__init__(triangles, points, scalars, **traits)
######################################################################
# `Surf` class.
######################################################################
class Surf(LUTBase):
# Disables/enables scalar visibility.
scalar_visibility = Bool(True, desc='show scalar visibility')
# Color of the mesh.
color = vtk_color_trait((0.5, 1.0, 0.5))
def __init__(self, x, y, z, scalars=None, **traits):
"""
Parameters
----------
- x : array
A list of x coordinate values formed using numpy.mgrid.
- y : array
A list of y coordinate values formed using numpy.mgrid.
- z : array
A list of z coordinate values formed using numpy.mgrid.
- scalars : array (optional)
Scalars to associate with the points.
"""
super(Surf, self).__init__(**traits)
triangles, points = make_triangles_points(x, y, z, scalars)
self.pd = make_triangle_polydata(triangles, points, scalars)
mapper = tvtk.PolyDataMapper(input=self.pd, lookup_table=self.lut,
scalar_visibility=self.scalar_visibility)
if scalars is not None:
rs = numpy.ravel(scalars)
dr = min(rs), max(rs)
mapper.scalar_range = dr
self.lut.table_range = dr
actor = _make_actor(mapper=mapper)
actor.property.set(color=self.color)
self.actors.append(actor)
def _scalar_visibility_changed(self, val):
if self.actors:
mapper = self.actors[0].mapper
mapper.scalar_visibility = val
self.render()
def _surface_changed(self, val):
if self.actors:
representation = 'w'
if val:
representation = 's'
self.actors[0].property.representation = representation
self.render()
def _color_changed(self, val):
if self.actors:
self.actors[0].property.color = val
self.render()
######################################################################
# `Contour3` class.
######################################################################
class Contour3(LUTBase):
# Number of contours.
number_of_contours = Int(10, desc='number of contours values')
# The contour filter.
contour_filter = Instance(tvtk.ContourFilter, ())
def __init__(self, x, y, z, scalars, **traits):
"""
Parameters
----------
- x : array
A list of x coordinate values formed using numpy.mgrid.
- y : array
A list of y coordinate values formed using numpy.mgrid.
- z : array
A list of z coordinate values formed using numpy.mgrid.
- scalars : array
Scalars to associate with the points.
"""
super(Contour3, self).__init__(**traits)
triangles, points = make_triangles_points(x, y, z, scalars)
self.pd = make_triangle_polydata(triangles, points, scalars)
dr = self.pd.point_data.scalars.range
self.lut.table_range = dr
cf = self.contour_filter
cf.input = self.pd
cf.generate_values(self.number_of_contours, dr[0], dr[1])
mapper = tvtk.PolyDataMapper(input=cf.output, lookup_table=self.lut,
scalar_range=dr)
cont_actor = _make_actor(mapper=mapper)
self.actors.append(cont_actor)
def _number_of_contours_changed(self, val):
dr = self.pd.point_data.scalars.range
self.contour_filter.generate_values(val, dr[0], dr[1])
self.render()
######################################################################
# `ImShow` class.
######################################################################
class ImShow(LUTBase):
"""Allows one to view a 2D numpy array as an image. This works
best for very large arrays (like 1024x1024 arrays).
"""
# Interpolate the image or not.
interpolate = Bool(False, desc='specifies if image should be interpolated')
def __init__(self, arr, scale=[1.0, 1.0, 1.0], **traits):
"""
Parameters
----------
- arr : Array to be viewed.
- scale : Scale the x, y and z axis as per passed values.
Defaults to [1.0, 1.0, 1.0].
"""
super(ImShow, self).__init__(**traits)
assert len(arr.shape) == 2, "Only 2D arrays can be viewed!"
ny, nx = arr.shape
dx, dy, junk = numpy.array(scale)*1.0
xa = numpy.arange(0, nx*scale[0] - 0.1*dx, dx, 'f')
ya = numpy.arange(0, ny*scale[1] - 0.1*dy, dy, 'f')
arr_flat = numpy.ravel(arr)
min_val = min(arr_flat)
max_val = max(arr_flat)
sp = _create_structured_points_direct(xa, ya)
lut = self.lut
lut.table_range = min_val, max_val
a = lut.map_scalars(arr_flat, 0, 0)
sp.point_data.scalars = a
sp.point_data.scalars.name = 'scalars'
sp.scalar_type = 'unsigned_char'
sp.number_of_scalar_components = 4
ia = tvtk.ImageActor(input=sp, interpolate=self.interpolate)
self.actors.append(ia)
def _interpolate_changed(self, val):
if self.actors:
ia = self.actors[0]
ia.interpolate = val
self.render()
######################################################################
# `Figure` class.
######################################################################
class Figure(HasTraits):
"""A Figure manages varuous MLabBase objects. Each of these
objects contains an actor and does something neat."""
# The various instances of MLabBase that populate this figure.
objects = List(MLabBase)
def __init__(self, renwin, **traits):
super(Figure, self).__init__(**traits)
self.renwin = renwin
def add(self, obj):
"""Add an object to the figure. This adds the actors of the
object to the renderwindow."""
self.objects.append(obj)
def pop(self):
"""Pops out the last object."""
return self.objects.pop()
def clear(self):
"""Removes all objects in the figure."""
self.objects = []
def _objects_changed(self, new, old):
self._handle_objects(new, old)
def _objects_items_changed(self, list_event):
self._handle_objects(list_event.removed, list_event.added)
def _handle_objects(self, removed, added):
for obj in removed:
obj.renwin = None
rw = self.renwin
for obj in added:
obj.renwin = rw
rw.reset_zoom()
rw.render()
def figure(outline=True, browser=True):
"""Simple helper function that returns a usable figure.
Parameters
----------
- outline : `bool` (default: True)
If True, create an outline bounding box along with an axes
marker for the scene.
- browser : `bool` (default, True)
If True, creates an IVTK scene with an embedded PipelineBrowser.
If False, does not create it.
"""
v = ivtk.viewer(browser)
f = Figure(v.scene)
if outline:
o = Outline()
f.add(o)
v.scene.reset_zoom()
return f
######################################################################
# Test functions.
######################################################################
def test_arrows(fig):
a = Arrows([[-1,-1,-1],[1,0,0]], [[1,1,1],[0,1,0]], color=(1,0,0))
fig.add(a)
def test_lines(fig):
"""Generates a pretty set of lines."""
n_mer, n_long = 6, 11
pi = numpy.pi
dphi = pi/1000.0
phi = numpy.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd')
mu = phi*n_mer
x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)
y = numpy.sin(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)
z = numpy.sin(n_long*mu/n_mer)*0.5
pts = numpy.zeros((len(mu), 3), 'd')
pts[:,0], pts[:,1], pts[:,2] = x, y, z
l = Line3(pts, radius=0.05, color=(0.0, 0.0, 0.8))
fig.add(l)
def test_molecule(fig):
"""Generates and shows a Caffeine molecule."""
o = [[30, 62, 19],[8, 21, 10]]
n = [[31, 21, 11], [18, 42, 14], [55, 46, 17], [56, 25, 13]]
c = [[5, 49, 15], [30, 50, 16], [42, 42, 15], [43, 29, 13], [18, 28, 12],
[32, 6, 8], [63, 36, 15], [59, 60, 20]]
h = [[23, 5, 7], [32, 0, 16], [37, 5, 0], [73, 36, 16], [69, 60, 20],
[54, 62, 28], [57, 66, 12], [6, 59, 16], [1, 44, 22], [0, 49, 6]]
oxygen = Spheres(o, radius=8, color=(1,0,0))
nitrogen = Spheres(n, radius=10, color=(0,0,1))
carbon = Spheres(c, radius=10, color=(0,1,0))
hydrogen = Spheres(h, radius=5, color=(1,1,1))
for i in oxygen, nitrogen, carbon, hydrogen:
fig.add(i)
def test_trimesh(fig):
"""Test for simple triangle mesh."""
pts = numpy.array([[0.0,0,0], [1.0,0.0,0.0], [1,1,0]], 'd')
triangles = [[0, 1, 2]]
t1 = TriMesh(triangles, pts)
fig.add(t1)
pts1 = pts.copy()
pts1[:,2] = 1.0
t2 = FancyTriMesh(triangles, pts1)
fig.add(t2)
def test_surf_regular(fig, contour=1):
"""Test Surf on regularly spaced co-ordinates like MayaVi."""
def f(x, y):
return numpy.sin(x*y)/(x*y)
x = numpy.arange(-7., 7.05, 0.1)
y = numpy.arange(-5., 5.05, 0.05)
if contour:
s = SurfRegularC(x, y, f)
else:
s = SurfRegular(x, y, f)
fig.add(s)
def test_simple_surf(fig):
"""Test Surf with a simple collection of points."""
x, y = numpy.mgrid[0:3:1,0:3:1]
z = x
s = Surf(x, y, z, numpy.asarray(z, 'd'))
fig.add(s)
def test_surf(fig):
"""A very pretty picture of spherical harmonics translated from
the octaviz example."""
pi = numpy.pi
cos = numpy.cos
sin = numpy.sin
dphi, dtheta = pi/250.0, pi/250.0
[phi,theta] = numpy.mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
x = r*sin(phi)*cos(theta)
y = r*cos(phi)
z = r*sin(phi)*sin(theta);
s = Surf(x, y, z, z)
fig.add(s)
def test_mesh_sphere(fig):
"""Create a simple sphere and test the mesh."""
pi = numpy.pi
cos = numpy.cos
sin = numpy.sin
du, dv = pi/20.0, pi/20.0
phi, theta = numpy.mgrid[0.01:pi+du*1.5:du, 0:2*pi+dv*1.5:dv]
r = 1.0
x = r*sin(phi)*cos(theta)
y = r*sin(phi)*sin(theta)
z = r*cos(phi)
s = FancyMesh(x, y, z, z, scalar_visibility=True)
fig.add(s)
def test_mesh(fig):
"""Create a fancy looking mesh (example taken from octaviz)."""
pi = numpy.pi
cos = numpy.cos
sin = numpy.sin
du, dv = pi/20.0, pi/20.0
u, v = numpy.mgrid[0.01:pi+du*1.5:du, 0:2*pi+dv*1.5:dv]
x = (1- cos(u))*cos(u+2*pi/3) * cos(v + 2*pi/3.0)*0.5
y = (1- cos(u))*cos(u+2*pi/3) * cos(v - 2*pi/3.0)*0.5
z = cos(u-2*pi/3.)
m = FancyMesh(x, y, z, z, scalar_visibility=True)
fig.add(m)
def test_imshow(fig):
"""Show a large random array."""
z_large = numpy.random.random((1024, 512))
i = ImShow(z_large)
fig.add(i)
def main():
gui = GUI()
# Create and open an application window.
window = ivtk.IVTKWithCrustAndBrowser(size=(800,600))
window.open()
f = Figure(window.scene)
# Create an outline.
o = Outline()
f.add(o)
# Create some pretty pictures.
#test_lines(f)
test_surf(f)
window.scene.reset_zoom()
# Start the GUI event loop!
gui.start_event_loop()
if __name__ == '__main__':
main()
|