/usr/include/mongo/db/btree.h is in mongodb-dev 1:2.4.9-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 | // btree.h
/**
* Copyright (C) 2008 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "mongo/pch.h"
#include "mongo/db/diskloc.h"
#include "mongo/db/dur.h"
#include "mongo/db/jsobj.h"
#include "mongo/db/key.h"
namespace mongo {
/**
* Our btree implementation generally follows the standard btree algorithm,
* which is described in many places. The nodes of our btree are referred to
* as buckets below. These buckets are of size BucketSize and their body is
* an ordered array of <bson key, disk loc> pairs, where disk loc is the disk
* location of a document and bson key is a projection of this document into
* the schema of the index for this btree. Ordering is determined on the
* basis of bson key first and then disk loc in case of a tie. All bson keys
* for a btree have identical schemas with empty string field names and may
* not have an objsize() exceeding KeyMax. The btree's buckets are
* themselves organized into an ordered tree. Although there are exceptions,
* generally buckets with n keys have n+1 children and the body of a bucket is
* at least lowWaterMark bytes. A more strictly enforced requirement is that
* a non root bucket must have at least one key except in certain transient
* states.
*
* Our btrees support the following primary read operations: finding a
* specified key; iterating from a starting key to the next or previous
* ordered key; and skipping from a starting key to another specified key
* without checking every intermediate key. The primary write operations
* are insertion and deletion of keys. Insertion may trigger a bucket split
* if necessary to avoid bucket overflow. In such a case, subsequent splits
* will occur recursively as necessary. Deletion may trigger a bucket
* rebalance, in which a size deficient bucket is filled with keys from an
* adjacent bucket. In this case, splitting may potentially occur in the
* parent. Deletion may alternatively trigger a merge, in which the keys
* from two buckets and a key from their shared parent are combined into the
* same bucket. In such a case, rebalancing or merging may proceed
* recursively from the parent.
*
* While the btree data format has been relatively constant over time, btrees
* initially created by versions of mongo earlier than the current version
* may embody different properties than freshly created btrees (while
* following the same data format). These older btrees are referred to
* below as legacy btrees.
*/
const int OldBucketSize = 8192;
#pragma pack(1)
template< class Version > class BucketBasics;
/**
* This is the fixed width data component for storage of a key within a
* bucket. It contains an offset pointer to the variable width bson
* data component. A _KeyNode may be 'unused', please see below.
*/
template< class Loc >
struct __KeyNode {
/** Signals that we are writing this _KeyNode and casts away const */
__KeyNode<Loc> & writing() const;
/**
* The 'left' child bucket of this key. If this is the i-th key, it
* points to the i index child bucket.
*/
Loc prevChildBucket;
/** The location of the record associated with this key. */
Loc recordLoc;
short keyDataOfs() const { return (short) _kdo; }
/** Offset within current bucket of the variable width bson key for this _KeyNode. */
unsigned short _kdo;
void setKeyDataOfs(short s) {
_kdo = s;
verify(s>=0);
}
/** Seems to be redundant. */
void setKeyDataOfsSavingUse(short s) {
_kdo = s;
verify(s>=0);
}
/**
* Unused keys are not returned by read operations. Keys may be marked
* as unused in cases where it is difficult to delete them while
* maintaining the constraints required of a btree.
*
* Setting ofs to odd is the sentinel for unused, as real recordLoc's
* are always even numbers. Note we need to keep its value basically
* the same as we use the recordLoc as part of the key in the index
* (to handle duplicate keys efficiently).
*
* Flagging keys as unused is a feature that is being phased out in favor
* of deleting the keys outright. The current btree implementation is
* not expected to mark a key as unused in a non legacy btree.
*/
void setUnused() {
recordLoc.GETOFS() |= 1;
}
void setUsed() { recordLoc.GETOFS() &= ~1; }
int isUnused() const {
return recordLoc.getOfs() & 1;
}
int isUsed() const {
return !isUnused();
}
};
/**
* This structure represents header data for a btree bucket. An object of
* this type is typically allocated inside of a buffer of size BucketSize,
* resulting in a full bucket with an appropriate header.
*
* The body of a btree bucket contains an array of _KeyNode objects starting
* from its lowest indexed bytes and growing to higher indexed bytes. The
* body also contains variable width bson keys, which are allocated from the
* highest indexed bytes toward lower indexed bytes.
*
* |hhhh|kkkkkkk--------bbbbbbbbbbbuuubbbuubbb|
* h = header data
* k = KeyNode data
* - = empty space
* b = bson key data
* u = unused (old) bson key data, that may be garbage collected
*/
class BtreeData_V0 {
protected:
/** Parent bucket of this bucket, which isNull() for the root bucket. */
DiskLoc parent;
/** Given that there are n keys, this is the n index child. */
DiskLoc nextChild;
/** can be reused, value is 8192 in current pdfile version Apr2010 */
unsigned short _wasSize;
/** zero */
unsigned short _reserved1;
int flags;
void _init() {
_reserved1 = 0;
_wasSize = BucketSize;
reserved = 0;
}
/** basicInsert() assumes the next three members are consecutive and in this order: */
/** Size of the empty region. */
int emptySize;
/** Size used for bson storage, including storage of old keys. */
int topSize;
/* Number of keys in the bucket. */
int n;
int reserved;
/* Beginning of the bucket's body */
char data[4];
public:
typedef __KeyNode<DiskLoc> _KeyNode;
typedef DiskLoc Loc;
typedef KeyBson Key;
typedef KeyBson KeyOwned;
enum { BucketSize = 8192 };
// largest key size we allow. note we very much need to support bigger keys (somehow) in the future.
static const int KeyMax = OldBucketSize / 10;
// A sentinel value sometimes used to identify a deallocated bucket.
static const int INVALID_N_SENTINEL = -1;
};
// a a a ofs ofs ofs ofs
class DiskLoc56Bit {
int ofs;
unsigned char _a[3];
unsigned long long Z() const {
// endian
return *((unsigned long long*)this) & 0x00ffffffffffffffULL;
}
enum {
// first bit of offsets used in _KeyNode we don't use -1 here.
OurNullOfs = -2
};
public:
template< class V >
const BtreeBucket<V> * btree() const {
return DiskLoc(*this).btree<V>();
}
template< class V >
BtreeBucket<V> * btreemod() const {
return DiskLoc(*this).btreemod<V>();
}
operator const DiskLoc() const {
// endian
if( isNull() ) return DiskLoc();
unsigned a = *((unsigned *) (_a-1));
return DiskLoc(a >> 8, ofs);
}
int& GETOFS() { return ofs; }
int getOfs() const { return ofs; }
bool operator<(const DiskLoc56Bit& rhs) const {
// the orderering of dup keys in btrees isn't too critical, but we'd like to put items that are
// close together on disk close together in the tree, so we do want the file # to be the most significant
// bytes
return Z() < rhs.Z();
}
int compare(const DiskLoc56Bit& rhs) const {
unsigned long long a = Z();
unsigned long long b = rhs.Z();
if( a < b ) return -1;
return a == b ? 0 : 1;
}
bool operator==(const DiskLoc56Bit& rhs) const { return Z() == rhs.Z(); }
bool operator!=(const DiskLoc56Bit& rhs) const { return Z() != rhs.Z(); }
bool operator==(const DiskLoc& rhs) const {
return DiskLoc(*this) == rhs;
}
bool operator!=(const DiskLoc& rhs) const { return !(*this==rhs); }
bool isNull() const { return ofs < 0; }
void Null() {
ofs = OurNullOfs;
_a[0] = _a[1] = _a[2] = 0;
}
string toString() const { return DiskLoc(*this).toString(); }
void operator=(const DiskLoc& loc) {
ofs = loc.getOfs();
int la = loc.a();
verify( la <= 0xffffff ); // must fit in 3 bytes
if( la < 0 ) {
if ( la != -1 ) {
log() << "btree diskloc isn't negative 1: " << la << endl;
verify ( la == -1 );
}
la = 0;
ofs = OurNullOfs;
}
memcpy(_a, &la, 3); // endian
}
DiskLoc56Bit& writing() const {
return *((DiskLoc56Bit*) getDur().writingPtr((void*)this, 7));
}
};
class BtreeData_V1 {
public:
typedef DiskLoc56Bit Loc;
//typedef DiskLoc Loc;
typedef __KeyNode<Loc> _KeyNode;
typedef KeyV1 Key;
typedef KeyV1Owned KeyOwned;
enum { BucketSize = 8192-16 }; // leave room for Record header
// largest key size we allow. note we very much need to support bigger keys (somehow) in the future.
static const int KeyMax = 1024;
// A sentinel value sometimes used to identify a deallocated bucket.
static const unsigned short INVALID_N_SENTINEL = 0xffff;
protected:
/** Parent bucket of this bucket, which isNull() for the root bucket. */
Loc parent;
/** Given that there are n keys, this is the n index child. */
Loc nextChild;
unsigned short flags;
/** basicInsert() assumes the next three members are consecutive and in this order: */
/** Size of the empty region. */
unsigned short emptySize;
/** Size used for bson storage, including storage of old keys. */
unsigned short topSize;
/* Number of keys in the bucket. */
unsigned short n;
/* Beginning of the bucket's body */
char data[4];
void _init() { }
};
typedef BtreeData_V0 V0;
typedef BtreeData_V1 V1;
/**
* This class adds functionality to BtreeData for managing a single bucket.
* The following policies are used in an attempt to encourage simplicity:
*
* Const member functions of this class are those which may be called on
* an object for which writing has not been signaled. Non const member
* functions may only be called on objects for which writing has been
* signaled. Note that currently some const functions write to the
* underlying memory representation of this bucket using optimized methods
* to signal write operations.
*
* DiskLoc parameters that may shadow references within the btree should
* be passed by value rather than by reference to non const member
* functions or to const member functions which may perform writes. This way
* a callee need not worry that write operations will change or invalidate
* its arguments.
*
* The current policy for dealing with bson arguments is the opposite of
* what is described above for DiskLoc arguments. We do not want to copy
* bson into memory as an intermediate step for btree changes, and if bson
* is to be moved it must be copied to the new location before the old
* location is invalidated. Care should be taken in cases where that invalid
* memory may be implicitly referenced by function arguments.
*
* A number of functions below require a thisLoc argument, which must be the
* disk location of the bucket mapped to 'this'.
*/
template< class Version >
class BucketBasics : public Version {
public:
template <class U> friend class BtreeBuilder;
typedef typename Version::Key Key;
typedef typename Version::_KeyNode _KeyNode;
typedef typename Version::Loc Loc;
int getN() const { return this->n; }
/**
* This is an in memory wrapper for a _KeyNode, and not itself part of btree
* storage. This object and its BSONObj 'key' will become invalid if the
* _KeyNode data that generated it is moved within the btree. In general,
* a KeyNode should not be expected to be valid after a write.
*/
class KeyNode {
public:
KeyNode(const BucketBasics<Version>& bb, const _KeyNode &k);
const Loc& prevChildBucket;
const Loc& recordLoc;
/* Points to the bson key storage for a _KeyNode */
Key key;
};
friend class KeyNode;
/** Assert write intent declared for this bucket already. */
void assertWritable();
void assertValid(const Ordering &order, bool force = false) const;
void assertValid(const BSONObj &orderObj, bool force = false) const { return assertValid(Ordering::make(orderObj),force); }
/**
* @return KeyNode for key at index i. The KeyNode will become invalid
* if the key is moved or reassigned, or if the node is packed. In general
* a KeyNode should not be expected to be valid after a write.
*/
const KeyNode keyNode(int i) const {
if ( i >= this->n ) {
massert( 13000 , (string)"invalid keyNode: " + BSON( "i" << i << "n" << this->n ).jsonString() , i < this->n );
}
return KeyNode(*this, k(i));
}
static int headerSize() {
const BucketBasics *d = 0;
return (char*)&(d->data) - (char*)&(d->parent);
}
static int bodySize() { return Version::BucketSize - headerSize(); }
static int lowWaterMark() { return bodySize() / 2 - Version::KeyMax - sizeof( _KeyNode ) + 1; } // see comment in btree.cpp
// for testing
int nKeys() const { return this->n; }
const DiskLoc getNextChild() const { return this->nextChild; }
// for tree inspection and statistical analysis
// NOTE: topSize and emptySize have different types in BtreeData_V0 and BtreeData_V1
/** Size used for bson storage, including storage of old keys. */
unsigned int getTopSize() const { return static_cast<unsigned int>(this->topSize); }
/** Size of the empty region. */
unsigned int getEmptySize() const { return static_cast<unsigned int>(this->emptySize); }
protected:
char * dataAt(short ofs) { return this->data + ofs; }
/** Initialize the header for a new node. */
void init();
/**
* Preconditions:
* - 0 <= keypos <= n
* - If key is inserted at position keypos, the bucket's keys will still be
* in order.
* Postconditions:
* - If key can fit in the bucket, the bucket may be packed and keypos
* may be decreased to reflect deletion of earlier indexed keys during
* packing, the key will be inserted at the updated keypos index with
* a null prevChildBucket, the subsequent keys shifted to the right,
* and the function will return true.
* - If key cannot fit in the bucket, the bucket will be packed and
* the function will return false.
* Although this function is marked const, it modifies the underlying
* btree representation through an optimized write intent mechanism.
*/
bool basicInsert(const DiskLoc thisLoc, int &keypos, const DiskLoc recordLoc, const Key& key, const Ordering &order) const;
/**
* Preconditions:
* - key / recordLoc are > all existing keys
* - The keys in prevChild and their descendants are between all existing
* keys and 'key'.
* Postconditions:
* - If there is space for key without packing, it is inserted as the
* last key with specified prevChild and true is returned.
* Importantly, nextChild is not updated!
* - Otherwise false is returned and there is no change.
*/
bool _pushBack(const DiskLoc recordLoc, const Key& key, const Ordering &order, const DiskLoc prevChild);
void pushBack(const DiskLoc recordLoc, const Key& key, const Ordering &order, const DiskLoc prevChild) {
bool ok = _pushBack( recordLoc , key , order , prevChild );
verify(ok);
}
/**
* This is a special purpose function used by BtreeBuilder. The
* interface is quite dangerous if you're not careful. The bson key
* returned here points to bucket memory that has been invalidated but
* not yet reclaimed.
*
* TODO Maybe this could be replaced with two functions, one which
* returns the last key without deleting it and another which simply
* deletes the last key. Then the caller would have enough control to
* ensure proper memory integrity.
*
* Preconditions:
* - bucket is not empty
* - last key of bucket is used (not unused)
* - nextChild isNull()
* - _unalloc will work correctly as used - see code
* Postconditions:
* - The last key of the bucket is removed, and its key and recLoc are
* returned. As mentioned above, the key points to unallocated memory.
*/
void popBack(DiskLoc& recLoc, Key &key);
/**
* Preconditions:
* - 0 <= keypos < n
* - there is no child bucket at keypos
* - n > 1
* - if mayEmpty == false or nextChild.isNull(), n > 0
* Postconditions:
* - The key at keypos is removed, and remaining keys are shifted over.
* - The bucket becomes unpacked.
* - if mayEmpty is true and nextChild.isNull(), the bucket may have no keys.
*/
void _delKeyAtPos(int keypos, bool mayEmpty = false);
/* !Packed means there is deleted fragment space within the bucket.
We "repack" when we run out of space before considering the node
to be full.
*/
enum Flags { Packed=1 };
/** n == 0 is ok */
const Loc& childForPos(int p) const { return p == this->n ? this->nextChild : k(p).prevChildBucket; }
Loc& childForPos(int p) { return p == this->n ? this->nextChild : k(p).prevChildBucket; }
/** Same as bodySize(). */
int totalDataSize() const;
/**
* @return true when a key may be dropped by pack()
* @param index index of the key that may be dropped
* @param refPos index of a particular key of interest, which must not
* be dropped; = 0 to safely ignore
*/
bool mayDropKey( int index, int refPos ) const;
/**
* Pack the bucket to reclaim space from invalidated memory.
* @refPos is an index in the bucket which may be updated if we
* delete keys from the bucket
* This function may cast away const and perform a write.
* Preconditions: none
* Postconditions:
* - Bucket will be packed
* - Some unused nodes may be dropped, but not ones at index 0 or refPos
* - Some used nodes may be moved
* - If refPos is the index of an existing key, it will be updated to that
* key's new index if the key is moved.
*/
void _pack(const DiskLoc thisLoc, const Ordering &order, int &refPos) const;
/** Pack when already writable */
void _packReadyForMod(const Ordering &order, int &refPos);
/** @return the size the bucket's body would have if we were to call pack() */
int packedDataSize( int refPos ) const;
void setNotPacked() { this->flags &= ~Packed; }
void setPacked() { this->flags |= Packed; }
/**
* Preconditions: 'bytes' is <= emptySize
* Postconditions: A buffer of size 'bytes' is allocated on the top side,
* and its offset is returned.
*/
int _alloc(int bytes);
/**
* This function can be used to deallocate the lowest byte index bson
* buffer in the top region, which in some but not all cases is for the
* n - 1 index key. This function only works correctly in certain
* special cases, please be careful.
* Preconditions: 'bytes' <= topSize
* Postconditions: The top region is decreased
*/
void _unalloc(int bytes);
/**
* Preconditions: 'N' <= n
* Postconditions:
* - All keys after the N index key are dropped.
* - Then bucket is packed, without dropping refPos if < refPos N.
*/
void truncateTo(int N, const Ordering &order, int &refPos);
/**
* Preconditions:
* - 'nDrop' < n
* - for now, refPos should be zero.
* Postconditions:
* - All keys before the nDrop index key are dropped.
* - The bucket is packed.
*/
void dropFront(int nDrop, const Ordering &order, int &refPos);
/**
* Preconditions: 0 <= keypos < n
* Postconditions: keypos indexed key is marked unused.
*/
void markUnused(int keypos);
/**
* BtreeBuilder uses the parent var as a temp place to maintain a linked list chain.
* we use tempNext() when we do that to be less confusing. (one might have written a union in C)
*/
DiskLoc tempNext() const { return this->parent; }
void setTempNext(DiskLoc l) { this->parent = l; }
void _shape(int level, stringstream&) const;
int Size() const;
/** @return i-indexed _KeyNode, without bounds checking */
public:
const _KeyNode& k(int i) const { return ((const _KeyNode*)this->data)[i]; }
_KeyNode& _k(int i) { return ((_KeyNode*)this->data)[i]; }
protected:
_KeyNode& k(int i) { return ((_KeyNode*)this->data)[i]; }
/**
* Preconditions: 'this' is packed
* @return the key index to be promoted on split
* @param keypos The requested index of a key to insert, which may affect
* the choice of split position.
*/
int splitPos( int keypos ) const;
/**
* Preconditions: nAdd * sizeof( _KeyNode ) <= emptySize
* Postconditions:
* - Increases indexes of existing _KeyNode objects by nAdd, reserving
* space for additional _KeyNode objects at front.
* - Does not initialize ofs values for the bson data of these
* _KeyNode objects.
*/
void reserveKeysFront( int nAdd );
/**
* Preconditions:
* - 0 <= i < n
* - The bson 'key' must fit in the bucket without packing.
* - If 'key' and 'prevChildBucket' are set at index i, the btree
* ordering properties will be maintained.
* Postconditions:
* - The specified key is set at index i, replacing the existing
* _KeyNode data and without shifting any other _KeyNode objects.
*/
void setKey( int i, const DiskLoc recordLoc, const Key& key, const DiskLoc prevChildBucket );
};
class IndexDetails;
class IndexInsertionContinuation;
template< class V>
struct IndexInsertionContinuationImpl;
/**
* This class adds functionality for manipulating buckets that are assembled
* in a tree. The requirements for const and non const functions and
* arguments are generally the same as in BtreeBucket. Because this class
* deals with tree structure, some functions that are marked const may
* trigger modification of another node in the btree or potentially of the
* current node. In such cases, the function's implementation explicitly
* casts away const when indicating an intent to write to the durability
* layer. The DiskLocs provided to such functions should be passed by
* value if they shadow pointers within the btree.
*
* To clarify enforcement of referential integrity in this implementation,
* we use the following pattern when deleting data we have a persistent
* pointer to. The pointer is cleared or removed explicitly, then the data
* it pointed to is cleaned up with a helper function.
*
* TODO It might make sense to put some of these functions in a class
* representing a full btree instead of a single btree bucket. That would
* allow us to use the const qualifier in a manner more consistent with
* standard usage. Right now the interface is for both a node and a tree,
* so assignment of const is sometimes nonideal.
*
* TODO There are several cases in which the 'this' pointer is invalidated
* as a result of deallocation. A separate class representing a btree would
* alleviate some fragile cases where the implementation must currently
* behave correctly if the 'this' pointer is suddenly invalidated by a
* callee.
*/
template< class V >
class BtreeBucket : public BucketBasics<V> {
friend class BtreeCursor;
friend struct IndexInsertionContinuationImpl<V>;
public:
// make compiler happy:
typedef typename V::Key Key;
typedef typename V::KeyOwned KeyOwned;
typedef typename BucketBasics<V>::KeyNode KeyNode;
typedef typename BucketBasics<V>::_KeyNode _KeyNode;
typedef typename BucketBasics<V>::Loc Loc;
const _KeyNode& k(int i) const { return static_cast< const BucketBasics<V> * >(this)->k(i); }
protected:
_KeyNode& k(int i) { return static_cast< BucketBasics<V> * >(this)->_k(i); }
public:
const KeyNode keyNode(int i) const { return static_cast< const BucketBasics<V> * >(this)->keyNode(i); }
bool isHead() const { return this->parent.isNull(); }
void dumpTree(const DiskLoc &thisLoc, const BSONObj &order) const;
long long fullValidate(const DiskLoc& thisLoc, const BSONObj &order, long long *unusedCount = 0, bool strict = false, unsigned depth=0) const; /* traverses everything */
bool isUsed( int i ) const { return this->k(i).isUsed(); }
string bucketSummary() const;
void dump(unsigned depth=0) const;
/**
* @return true if key exists in index
*
* @order - indicates order of keys in the index. this is basically the index's key pattern, e.g.:
* BSONObj order = ((IndexDetails&)idx).keyPattern();
* likewise below in bt_insert() etc.
*/
private:
bool exists(const IndexDetails& idx, const DiskLoc &thisLoc, const Key& key, const Ordering& order) const;
public:
/**
* @param self - Don't complain about ourself already being in the index case.
* @return true = There is a duplicate used key.
*/
bool wouldCreateDup(
const IndexDetails& idx, const DiskLoc &thisLoc,
const Key& key, const Ordering& order,
const DiskLoc &self) const;
/**
* Preconditions: none
* Postconditions: @return a new bucket allocated from pdfile storage
* and init()-ed. This bucket is suitable to for use as a new root
* or any other new node in the tree.
*/
static DiskLoc addBucket(const IndexDetails&);
/**
* Preconditions: none
* Postconditions:
* - Some header values in this bucket are cleared, and the bucket is
* deallocated from pdfile storage.
* - The memory at thisLoc is invalidated, and 'this' is invalidated.
*/
void deallocBucket(const DiskLoc thisLoc, const IndexDetails &id);
/**
* Preconditions:
* - 'key' has a valid schema for this index.
* - All other paramenters are valid and consistent with this index if applicable.
* Postconditions:
* - If key is bigger than KeyMax, @return 2 or 3 and no change.
* - If key / recordLoc exist in the btree as an unused key, set them
* as used and @return 0
* - If key / recordLoc exist in the btree as a used key, @throw
* exception 10287 and no change.
* - If key / recordLoc do not exist in the btree, they are inserted
* and @return 0. The root of the btree may be changed, so
* 'this'/thisLoc may no longer be the root upon return.
*/
int bt_insert(const DiskLoc thisLoc, const DiskLoc recordLoc,
const BSONObj& key, const Ordering &order, bool dupsAllowed,
IndexDetails& idx, bool toplevel = true) const;
/** does the insert in two steps - can then use an upgradable lock for step 1, which
is the part which may have page faults. also that step is most of the computational work.
*/
void twoStepInsert(DiskLoc thisLoc, IndexInsertionContinuationImpl<V> &c, bool dupsAllowed) const;
/**
* Preconditions:
* - 'key' has a valid schema for this index, and may have objsize() > KeyMax.
* Postconditions:
* - If key / recordLoc are in the btree, they are removed (possibly
* by being marked as an unused key), @return true, and potentially
* invalidate 'this' / thisLoc and change the head.
* - If key / recordLoc are not in the btree, @return false and do nothing.
*/
bool unindex(const DiskLoc thisLoc, IndexDetails& id, const BSONObj& key, const DiskLoc recordLoc) const;
/**
* locate may return an "unused" key that is just a marker. so be careful.
* looks for a key:recordloc pair.
*
* @found - returns true if exact match found. note you can get back a position
* result even if found is false.
*/
DiskLoc locate(const IndexDetails &idx , const DiskLoc& thisLoc, const BSONObj& key, const Ordering &order,
int& pos, bool& found, const DiskLoc &recordLoc, int direction=1) const;
DiskLoc locate(const IndexDetails &idx , const DiskLoc& thisLoc, const Key& key, const Ordering &order,
int& pos, bool& found, const DiskLoc &recordLoc, int direction=1) const;
/**
* find the first instance of the key
* does not handle dups
* WARNING: findSingle may not be compound index safe. this may need to change. see notes in
* findSingle code.
* @return the record location of the first match
*/
DiskLoc findSingle( const IndexDetails &indexdetails , const DiskLoc& thisLoc, const BSONObj& key ) const;
/**
* Advance to next or previous key in the index.
* @param direction to advance.
*/
DiskLoc advance(const DiskLoc& thisLoc, int& keyOfs, int direction, const char *caller) const;
/** Advance in specified direction to the specified key */
void advanceTo(DiskLoc &thisLoc, int &keyOfs, const BSONObj &keyBegin, int keyBeginLen, bool afterKey, const vector< const BSONElement * > &keyEnd, const vector< bool > &keyEndInclusive, const Ordering &order, int direction ) const;
/** Locate a key with fields comprised of a combination of keyBegin fields and keyEnd fields. */
static void customLocate(DiskLoc &locInOut, int &keyOfs, const BSONObj &keyBegin, int keyBeginLen, bool afterKey, const vector< const BSONElement * > &keyEnd, const vector< bool > &keyEndInclusive, const Ordering &order, int direction, pair< DiskLoc, int > &bestParent ) ;
/** @return head of the btree by traversing from current bucket. */
const DiskLoc getHead(const DiskLoc& thisLoc) const;
/** get tree shape */
void shape(stringstream&) const;
static void a_test(IndexDetails&);
static int getKeyMax();
protected:
/**
* Preconditions:
* - 0 <= firstIndex <= n
* - -1 <= lastIndex <= n ( -1 is equivalent to n )
* Postconditions:
* - Any children at indexes firstIndex through lastIndex (inclusive)
* will have their parent pointers set to thisLoc.
*/
void fixParentPtrs(const DiskLoc thisLoc, int firstIndex = 0, int lastIndex = -1) const;
/**
* Preconditions:
* - thisLoc is not the btree head.
* - n == 0 is ok
* Postconditions:
* - All cursors pointing to this bucket will be updated.
* - This bucket's parent's child pointer is set to null.
* - This bucket is deallocated from pdfile storage.
* - 'this' and thisLoc are invalidated.
*/
void delBucket(const DiskLoc thisLoc, const IndexDetails&);
/**
* Preconditions: 0 <= p < n
* Postconditions:
* - The key at index p is removed from the btree.
* - 'this' and thisLoc may be invalidated.
* - The tree head may change.
*/
void delKeyAtPos(const DiskLoc thisLoc, IndexDetails& id, int p, const Ordering &order);
/**
* Preconditions:
* - n == 0 is ok
* Postconditions:
* - If thisLoc is head, or if its body has at least lowWaterMark bytes,
* return false and do nothing.
* - Otherwise, if thisLoc has left or right neighbors, either balance
* or merge with them and return true. Also, 'this' and thisLoc may
* be invalidated and the tree head may change.
*/
bool mayBalanceWithNeighbors(const DiskLoc thisLoc, IndexDetails &id, const Ordering &order) const;
/**
* Preconditions:
* - 0 <= leftIndex < n
* - The child at leftIndex or the child at leftIndex + 1 contains
* fewer than lowWaterMark bytes.
* Postconditions:
* - If the child bucket at leftIndex can merge with the child index
* at leftIndex + 1, do nothing and return false.
* - Otherwise, balance keys between the leftIndex child and the
* leftIndex + 1 child, return true, and possibly change the tree head.
*/
bool tryBalanceChildren( const DiskLoc thisLoc, int leftIndex, IndexDetails &id, const Ordering &order ) const;
/**
* Preconditions:
* - All preconditions of tryBalanceChildren.
* - The leftIndex child and leftIndex + 1 child cannot be merged.
* Postconditions:
* - Keys are moved between the leftIndex child and the leftIndex + 1
* child such that neither child has fewer than lowWaterMark bytes.
* The tree head may change.
*/
void doBalanceChildren( const DiskLoc thisLoc, int leftIndex, IndexDetails &id, const Ordering &order );
/**
* Preconditions:
* - All preconditions of doBalanceChildren
* - The leftIndex and leftIndex + 1 children are packed.
* - The leftIndex + 1 child has fewer than lowWaterMark bytes.
* - split returned by rebalancedSeparatorPos()
* Postconditions:
* - The key in lchild at index split is set as thisLoc's key at index
* leftIndex, which may trigger a split and change the tree head.
* The previous key in thisLoc at index leftIndex and all keys with
* indexes greater than split in lchild are moved to rchild.
*/
void doBalanceLeftToRight( const DiskLoc thisLoc, int leftIndex, int split,
BtreeBucket<V> *l, const DiskLoc lchild,
BtreeBucket<V> *r, const DiskLoc rchild,
IndexDetails &id, const Ordering &order );
/**
* Preconditions:
* - All preconditions of doBalanceChildren
* - The leftIndex and leftIndex + 1 children are packed.
* - The leftIndex child has fewer than lowWaterMark bytes.
* - split returned by rebalancedSeparatorPos()
* Postconditions:
* - The key in rchild at index split - l->n - 1 is set as thisLoc's key
* at index leftIndex, which may trigger a split and change the tree
* head. The previous key in thisLoc at index leftIndex and all keys
* with indexes less than split - l->n - 1 in rchild are moved to
* lchild.
*/
void doBalanceRightToLeft( const DiskLoc thisLoc, int leftIndex, int split,
BtreeBucket<V> *l, const DiskLoc lchild,
BtreeBucket<V> *r, const DiskLoc rchild,
IndexDetails &id, const Ordering &order );
/**
* Preconditions:
* - 0 <= leftIndex < n
* - this->canMergeChildren( thisLoc, leftIndex ) == true
* Postconditions:
* - All of the above mentioned keys will be placed in the left child.
* - The tree may be updated recursively, resulting in 'this' and
* thisLoc being invalidated and the tree head being changed.
*/
void doMergeChildren( const DiskLoc thisLoc, int leftIndex, IndexDetails &id, const Ordering &order);
/**
* Preconditions:
* - n == 0
* - !nextChild.isNull()
* Postconditions:
* - 'this' and thisLoc are deallocated (and invalidated), any cursors
* to them are updated, and the tree head may change.
* - nextChild replaces thisLoc in the btree structure.
*/
void replaceWithNextChild( const DiskLoc thisLoc, IndexDetails &id );
/**
* @return true iff the leftIndex and leftIndex + 1 children both exist,
* and if their body sizes when packed and the thisLoc key at leftIndex
* would fit in a single bucket body.
*/
bool canMergeChildren( const DiskLoc &thisLoc, int leftIndex ) const;
/**
* Preconditions:
* - leftIndex and leftIndex + 1 children are packed
* - leftIndex or leftIndex + 1 child is below lowWaterMark
* @return index of the rebalanced separator; the index value is
* determined as if we had a bucket with body
* <left bucket keys array>.push( <old separator> ).concat( <right bucket keys array> )
* and called splitPos( 0 ) on it.
*/
int rebalancedSeparatorPos( const DiskLoc &thisLoc, int leftIndex ) const;
/**
* Preconditions: thisLoc has a parent
* @return parent's index of thisLoc.
*/
int indexInParent( const DiskLoc &thisLoc ) const;
public:
Key keyAt(int i) const {
if( i >= this->n )
return Key();
return Key(this->data + k(i).keyDataOfs());
}
protected:
/**
* Preconditions:
* - This bucket is packed.
* - Cannot add a key of size KeyMax to this bucket.
* - 0 <= keypos <= n is the position of a new key that will be inserted
* - lchild is equal to the existing child at index keypos.
* Postconditions:
* - The thisLoc bucket is split into two packed buckets, possibly
* invalidating the initial position of keypos, with a split key
* promoted to the parent. The new key key/recordLoc will be inserted
* into one of the split buckets, and lchild/rchild set appropriately.
* Splitting may occur recursively, possibly changing the tree head.
*/
void split(const DiskLoc thisLoc, int keypos,
const DiskLoc recordLoc, const Key& key,
const Ordering& order, const DiskLoc lchild, const DiskLoc rchild, IndexDetails& idx);
/**
* Preconditions:
* - 0 <= keypos <= n
* - If key / recordLoc are inserted at position keypos, with provided
* lchild and rchild, the btree ordering requirements will be
* maintained.
* - lchild is equal to the existing child at index keypos.
* - n == 0 is ok.
* Postconditions:
* - The key / recordLoc are inserted at position keypos, and the
* bucket is split if necessary, which may change the tree head.
* - The bucket may be packed or split, invalidating the specified value
* of keypos.
* This function will always modify thisLoc, but it's marked const because
* it commonly relies on the specialized writ]e intent mechanism of basicInsert().
*/
void insertHere(const DiskLoc thisLoc, int keypos,
const DiskLoc recordLoc, const Key& key, const Ordering &order,
const DiskLoc lchild, const DiskLoc rchild, IndexDetails &idx) const;
/** bt_insert() is basically just a wrapper around this. */
int _insert(const DiskLoc thisLoc, const DiskLoc recordLoc,
const Key& key, const Ordering &order, bool dupsAllowed,
const DiskLoc lChild, const DiskLoc rChild, IndexDetails &idx) const;
void insertStepOne(
DiskLoc thisLoc, IndexInsertionContinuationImpl<V>& c, bool dupsAllowed) const;
bool find(const IndexDetails& idx, const Key& key, const DiskLoc &recordLoc, const Ordering &order, int& pos, bool assertIfDup) const;
static bool customFind( int l, int h, const BSONObj &keyBegin, int keyBeginLen, bool afterKey, const vector< const BSONElement * > &keyEnd, const vector< bool > &keyEndInclusive, const Ordering &order, int direction, DiskLoc &thisLoc, int &keyOfs, pair< DiskLoc, int > &bestParent ) ;
static void findLargestKey(const DiskLoc& thisLoc, DiskLoc& largestLoc, int& largestKey);
static int customBSONCmp( const BSONObj &l, const BSONObj &rBegin, int rBeginLen, bool rSup, const vector< const BSONElement * > &rEnd, const vector< bool > &rEndInclusive, const Ordering &o, int direction );
/** If child is non null, set its parent to thisLoc */
static void fix(const DiskLoc thisLoc, const DiskLoc child);
/**
* Preconditions:
* - 0 <= keypos < n
* - If the specified key and recordLoc are placed in keypos of thisLoc,
* and lchild and rchild are set, the btree ordering properties will
* be maintained.
* - rchild == childForPos( keypos + 1 )
* - childForPos( keypos ) is referenced elsewhere if nonnull.
* Postconditions:
* - The key at keypos will be replaced with the specified key and
* lchild, potentially splitting this bucket and changing the tree
* head.
* - childForPos( keypos ) will be orphaned.
*/
void setInternalKey( const DiskLoc thisLoc, int keypos,
const DiskLoc recordLoc, const Key &key, const Ordering &order,
const DiskLoc lchild, const DiskLoc rchild, IndexDetails &idx);
/**
* Preconditions:
* - 0 <= keypos < n
* - The keypos or keypos+1 indexed child is non null.
* Postconditions:
* - The specified key is deleted by replacing it with another key if
* possible. This replacement may cause a split and change the tree
* head. The replacement key will be deleted from its original
* location, potentially causing merges and splits that may invalidate
* 'this' and thisLoc and change the tree head.
* - If the key cannot be replaced, it will be marked as unused. This
* is only expected in legacy btrees.
*/
void deleteInternalKey( const DiskLoc thisLoc, int keypos, IndexDetails &id, const Ordering &order );
public:
/** simply builds and returns a dup key error message string */
static string dupKeyError( const IndexDetails& idx , const Key& key );
};
#pragma pack()
/**
* give us a writable version of the btree bucket (declares write intent).
* note it is likely more efficient to declare write intent on something smaller when you can.
*/
template< class V >
BtreeBucket<V> * DiskLoc::btreemod() const {
verify( _a != -1 );
BtreeBucket<V> *b = const_cast< BtreeBucket<V> * >( btree<V>() );
return static_cast< BtreeBucket<V>* >( getDur().writingPtr( b, V::BucketSize ) );
}
template< class V >
BucketBasics<V>::KeyNode::KeyNode(const BucketBasics<V>& bb, const _KeyNode &k) :
prevChildBucket(k.prevChildBucket),
recordLoc(k.recordLoc), key(bb.data+k.keyDataOfs())
{ }
} // namespace mongo;
|