This file is indexed.

/usr/share/libctl/specs/mpb.scm is in mpb 1.4.2-18build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
; Copyright (C) 1999, 2000, 2001, 2002, Massachusetts Institute of Technology.
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

; ****************************************************************

; Get the number of arguments to a function p.  However, some
; older versions of Guile (e.g. 1.2) do not support the 'arity
; property, and procedure-property just returns false.  In
; this case, we assume that the procedure returns 1 argument,
; as this is the most useful default for our purposes.  Sigh.

(define (procedure-num-args p) 
  (let ((arity (procedure-property p 'arity)))
    (if arity (car arity) 1)))

; ****************************************************************

(define-class material-type no-parent)

(define-class dielectric material-type
  (define-property epsilon no-default 'number))

(define (index n) (epsilon (* n n))) ; convenient substitute for epsilon

(define-class dielectric-anisotropic material-type
  (define-property epsilon-diag no-default 'vector3)
  (define-property epsilon-offdiag (vector3 0 0 0) 'cvector3)
  (define-property
    epsilon-offdiag-imag (vector3 0 0 0) 'vector3))

(define-class material-function material-type
  (define-property material-func no-default 'function
    (lambda (p) (= 1 (procedure-num-args p)))))

; use the solid geometry classes, variables, etcetera in libgeom:
; (one specifications file can include another specifications file)
(include "/usr/share/libctl/utils/geom.scm")

; ****************************************************************

; eigensolver flags (grabbed from eigensolver.h by configure)

; first, we must define a function (pow2 n) to return 2^n:
(define (pow2 n) (if (<= n 0) 1 (* 2 (pow2 (- n 1)))))

(define EIGS_VERBOSE (pow2 0))(define EIGS_PROJECT_PRECONDITIONING (pow2 1))(define EIGS_RESET_CG (pow2 2))(define EIGS_FORCE_EXACT_LINMIN (pow2 3))(define EIGS_FORCE_APPROX_LINMIN (pow2 4))(define EIGS_ORTHONORMALIZE_FIRST_STEP (pow2 5))(define EIGS_REORTHOGONALIZE (pow2 6))(define EIGS_DYNAMIC_RESET_CG (pow2 7))(define EIGS_ORTHOGONAL_PRECONDITIONER (pow2 8))(define EIGS_DEFAULT_FLAGS (+ EIGS_RESET_CG EIGS_REORTHOGONALIZE)) ; substituted by configure script

; ****************************************************************

; More input/output variables (besides those defined by libgeom, above).

(define-input-var k-points '() (make-list-type 'vector3))

(define-input-var num-bands 1 'integer)
(define-input-var tolerance 1.0e-7 'number positive?)
(define-input-var target-freq 0.0 'number (lambda (x) (>= x 0)))

(define-input-var mesh-size 3 'integer positive?)

(define-input-var epsilon-input-file "" 'string)

(define-input-var deterministic? false 'boolean)

; Eigensolver minutiae:
(define-input-var simple-preconditioner? false 'boolean)
(define-input-var eigensolver-flags EIGS_DEFAULT_FLAGS 'integer)
(define-input-var eigensolver-block-size -11 'integer)
(define-input-var eigensolver-nwork 3 'integer positive?)
(define-input-var eigensolver-davidson? false 'boolean)
(define-input-output-var eigensolver-flops 0 'number)

(define-output-var freqs (make-list-type 'number))
(define-output-var iterations 'integer)

(define-output-var parity 'string)

(define-input-var negative-epsilon-ok? false 'boolean)
(define (allow-negative-epsilon)
  (set! negative-epsilon-ok? true)
  (set! target-freq (/ 1 infinity)))

; ****************************************************************

; Definitions of external (C) functions:

; (init-params p true) initializes the geometry, etcetera, and does
; everything else that's needed to get ready for an eigenvalue
; calculation with parity p (see below).  This should be called
; after the input variables are changed.  If false is passed instead
; of true, fields from a previous run are retained, if possible, as a
; starting point for the eigensolver.
(define-external-function init-params true false
  no-return-value 'integer 'boolean)

; (set-parity p) changes the parity that is solved for by
; solve-kpoint, below.  p should be one of the following constants
; init-params should already have been called.  Be sure to call
; (randomize-fields) if you change the parity without calling
; init-params.
(define NO-PARITY 0)
(define EVEN-Z 1)
(define ODD-Z 2)
(define EVEN-Y 4)
(define ODD-Y 8)
(define TE EVEN-Z)
(define TM ODD-Z)
(define PREV-PARITY -1)
(define-external-function set-parity false false 
  no-return-value 'integer)
(define set-polarization set-parity) ; backwards compatibility

; (randomize-fields) initializes the fields to random values; should
; only be called after init-params.
(define-external-function randomize-fields false false no-return-value)

; (solve-kpoint kpoint) solves for the specified bands at the given k point.
; Requires that (init-params) has been called, and does not re-read the
; input variables, but does write the output vars.
(define-external-function solve-kpoint false true no-return-value 'vector3)

(define-external-function get-dfield false false no-return-value 'integer)
(define-external-function get-hfield false false no-return-value 'integer)
(define-external-function get-efield-from-dfield false false no-return-value)
(define-external-function get-epsilon false false no-return-value)
(define-external-function fix-field-phase false false no-return-value)
(define-external-function compute-field-energy false false 
	(make-list-type 'number))

(define-external-function get-epsilon-point false false 'number 'vector3)
(define-external-function get-epsilon-inverse-tensor-point false false 
  'cmatrix3x3 'vector3)
(define-external-function get-energy-point false false 'number 'vector3)
(define get-scalar-field-point get-energy-point)
(define-external-function get-bloch-field-point false false 'cvector3 'vector3)
(define-external-function get-field-point false false 'cvector3 'vector3)

(define-external-function compute-energy-in-dielectric false false
  'number 'number 'number)
(define-external-function compute-field-integral false false
  'cnumber 'function)
(define-external-function compute-energy-integral false false
  'number 'function)
(define-external-function compute-energy-in-object-list false false
  'number (make-list-type 'geometric-object))

(define-external-function output-field-to-file false false
  no-return-value 'integer 'string)  

(define-external-function mpi-is-master? false false 'boolean)
(define-external-function using-mpi? false false 'boolean)
(define-external-function mpi-num-procs false false 'integer)
(define-external-function mpi-proc-index false false 'integer)

(define-external-function get-kpoint-index false false 'integer)
(define-external-function set-kpoint-index false false
  no-return-value 'integer)

(define-external-function sqmatrix-size false false 'integer 'SCM)
(define-external-function sqmatrix-ref false false 'cnumber 
  'SCM 'integer 'integer)
(define-external-function get-eigenvectors false false 'SCM
  'integer 'integer)
(define-external-function set-eigenvectors false false no-return-value
  'SCM 'integer)
(define-external-function dot-eigenvectors false false 'SCM
  'SCM 'integer)
(define-external-function scale-eigenvector false false no-return-value
  'integer 'cnumber)
(define-external-function output-eigenvectors false false no-return-value
  'SCM 'string)
(define-external-function input-eigenvectors false false 'SCM 'string 'integer)
(define-external-function save-eigenvectors false false no-return-value
  'string)
(define-external-function load-eigenvectors false false no-return-value
  'string)

(define cur-field 'cur-field)
(define-external-function cur-field? false false 'boolean 'SCM)
(define-external-function rscalar-field-make false false 'SCM 'SCM)
(define-external-function cvector-field-make false false 'SCM 'SCM)
(define-external-function cvector-field-nonbloch! false false
  no-return-value 'SCM)
(define-external-function field-make false false 'SCM 'SCM)
(define-external-function fields-conform? false false 'boolean 'SCM 'SCM)
(define-external-function field-set! false false no-return-value 'SCM 'SCM)
(define (field-copy f) (let ((f' (field-make f))) (field-set! f' f) f'))
(define-external-function field-load false false no-return-value 'SCM)
(define-external-function field-mapL! false false no-return-value 'SCM 
  'function (make-list-type 'SCM))
(define (field-map! dest f . src) (apply field-mapL! (list dest f src)))
(define-external-function integrate-fieldL false false 'cnumber
  'function (make-list-type 'SCM))
(define (integrate-fields f . src) (apply integrate-fieldL (list f src)))
(define-external-function rscalar-field-get-point false false 'number 
  'SCM 'vector3)
(define-external-function cvector-field-get-point false false 'cvector3 
  'SCM 'vector3)
(define-external-function cvector-field-get-point-bloch false false 'cvector3 
  'SCM 'vector3)

; ****************************************************************

; Set print-ok? to whether or not we are the MPI master process.
; However, don't try this if we are running within gen-ctl-io,
; as it won't work.
(if (not (defined? 'output-source)) ; (a function defined by gen-ctl-io)
    (set! print-ok? (mpi-is-master?)))

(if (and (not (defined? 'output-source)) (using-mpi?))
    (set! interactive? false)) ; MPI doesn't support interactive mode

; ****************************************************************

; Utility function to display a comma-delimited list of data for the
; current k point, prefixed by data-name and the current parity.

(define (display-kpoint-data data-name data)
  (print parity data-name ":, " (get-kpoint-index))
  (map (lambda (d) (print ", " d)) data)
  (print "\n"))

; ****************************************************************

; Computing parities:

(define-external-function compute-zparities false false
  (make-list-type 'number))
(define-external-function compute-yparities false false
  (make-list-type 'number))

(define (display-zparities)
  (display-kpoint-data "zparity" (compute-zparities)))
(define (display-yparities)
  (display-kpoint-data "yparity" (compute-yparities)))

; ****************************************************************

; Computing group velocities:

(define-external-function compute-group-velocity-component false false
  (make-list-type 'number) 'vector3)

; Return a list of the group velocity vector3's, in the cartesian
; basis (and units of c):
(define (compute-group-velocities)
  (let ((vx (compute-group-velocity-component
	     (cartesian->reciprocal (vector3 1 0 0))))
	(vy (compute-group-velocity-component
	     (cartesian->reciprocal (vector3 0 1 0))))
	(vz (compute-group-velocity-component
	     (cartesian->reciprocal (vector3 0 0 1)))))
    (map (lambda (x y z) (vector3 x y z)) vx vy vz)))

; Define a band function to be passed to run, so that you can easily
; display the group velocities for each k-point.
(define (display-group-velocities)
  (display-kpoint-data "velocity" (compute-group-velocities)))

; ****************************************************************

; Add some predefined variables, for convenience:

(define vacuum (make dielectric (epsilon 1.0)))
(define air vacuum)

(define nothing (make material-type)) ; punches a "hole" through objects
				      ; to the default/background material

(define infinity 1.0e20) ; big number for infinite dimensions of objects

(set! default-material air)

; ****************************************************************

; The remainder of this file consists of Scheme convenience functions.

; ****************************************************************

; Function to convert a k-point k into an equivalent point in the
; first Brillouin zone (not necessarily the irreducible Brillouin zone):
(define (first-brillouin-zone k)
  (define (n k) (vector3-norm (reciprocal->cartesian k)))
  (define (try+ k v)
    (if (< (n (vector3+ k v)) (n k)) (try+ (vector3+ k v) v) k))
  (define (try k v) (try+ (try+ k v) (vector3- (vector3 0) v)))
  (define (try-all k)
    (try (try (try k (vector3 1 0 0)) (vector3 0 1 0)) (vector3 0 0 1)))
  (define (try-all&repeat k)
    (let ((knew (try-all k)))
      (if (< (n knew) (n k)) (try-all&repeat knew) k)))
  (let ((k0 (vector3- k (vector-map inexact->exact k))))
    (if (< (n k0) (n k)) (try-all&repeat k0) (try-all&repeat k))))

; functions to manipulate the fields; these are mainly convenient
; wrappers for the external functions defined previously.

(define (get-efield which-band)
  (get-dfield which-band)
  (get-efield-from-dfield))

(define-param filename-prefix "")

(define (output-field)
  (output-field-to-file -1 filename-prefix))

(define (output-field-x)
  (output-field-to-file 0 filename-prefix))

(define (output-field-y)
  (output-field-to-file 1 filename-prefix))

(define (output-field-z)
  (output-field-to-file 2 filename-prefix))

(define (output-epsilon)
  (get-epsilon)
  (output-field-to-file -1 filename-prefix))

(define (compute-energy-in-objects . objects)
  (compute-energy-in-object-list objects))

; ****************************************************************
; Functions to compute and output gaps, given the lists of frequencies
; computed at each k point.

; The band-range-data is a list if ((min . k-point) . (max . k-point))
; pairs, with each pair describing the frequency range of a band and
; the k-points where it achieves its maximum/minimum.  Here, we update
; this data with a new list of band frequencies, and return the new
; data.  If band-range-data is null or too short, the needed entries
; will be created.
(define (update-band-range-data band-range-data freqs k-point)
  (define (ubrd band-range-data freqs br-start)
    (if (null? freqs)
	(append (reverse br-start) band-range-data)
	(let ((br (if (null? band-range-data)
		      (cons (cons infinity -1) (cons (- infinity) -1))
		      (car band-range-data)))
	      (br-rest (if (null? band-range-data) '() (cdr band-range-data))))
	  (let ((newmin (if (< (car freqs) (caar br))
			    (cons (car freqs) k-point) (car br)))
		(newmax (if (> (car freqs) (cadr br))
			    (cons (car freqs) k-point) (cdr br))))
	    (ubrd br-rest (cdr freqs) 
		  (cons (cons newmin newmax) br-start))))))
  (ubrd band-range-data freqs '()))

; Output the band range data in a nice format:
(define (output-band-range-data br-data)
  (define (obr br i)
    (if (not (null? br))
	(begin
	  (print "Band " i " range: " (caaar br) " at " (cdaar br)
		 " to "  (cadar br) " at " (cddar br) "\n")
	  (obr (cdr br) (+ i 1)))))
  (obr br-data 1))

; Output any gaps in the given band ranges, and return a list
; of the gaps as a list of (percent freq-min freq-max) lists.
(define (output-gaps band-range-data)
  (define (ogaps br-cur br-rest i gaps)
    (if (null? br-rest)
	(reverse gaps)
	(if (>= (cadr br-cur) (caaar br-rest))
	    (ogaps (car br-rest) (cdr br-rest) (+ i 1) gaps)
	    (let ((gap-size (/ (* 200 (- (caaar br-rest) (cadr br-cur)))
			       (+ (caaar br-rest) (cadr br-cur)))))
	      (print "Gap from band " i " (" (cadr br-cur) ") to band "
		     (+ i 1) " (" (caaar br-rest) "), " gap-size "%\n")
	      (ogaps (car br-rest) (cdr br-rest) (+ i 1)
		     (cons (list gap-size (cadr br-cur) (caaar br-rest)) gaps))
	      ))))
  (if (null? band-range-data)
      '()
      (ogaps (car band-range-data) (cdr band-range-data) 1 '())))

; variables holding the band range data and current list of gaps, in
; the format returned by update-band-range-data and output-gaps, above:
(define band-range-data '())
(define gap-list '())

; Return the frequency gap from the band #lower-band to the band
; #(lower-band+1), as a percentage of mid-gap frequency.  The "gap"
; may be negative if the maximum of the lower band is higher than the
; minimum of the upper band.  (The gap is computed from the
; band-range-data of the previous run.)
(define (retrieve-gap lower-band)
  (if (> (+ lower-band 1) (length band-range-data))
      (error "retrieve-gap called for higher band than was calculated")
      (let ((f1 (cadr (list-ref band-range-data (- lower-band 1))))
	    (f2 (caar (list-ref band-range-data lower-band))))
	(/ (- f2 f1) (* 0.005 (+ f1 f2))))))

; ****************************************************************

; stuff to keep statistics on the eigensolver performance, for tuning:
(define eigensolver-iters '()) ; the iterations used, updated by (run)
(define total-run-time 0.0) ; the total time used by (run) functions (seconds)

(define (display-eigensolver-stats)
  (let ((num-runs (length eigensolver-iters)))
    (if (> num-runs 0)
	(let ((min-iters (apply min eigensolver-iters))
	      (max-iters (apply max eigensolver-iters))
	      (mean-iters (/ (fold-right + 0 eigensolver-iters) num-runs)))
	  (print "eigensolver iterations for " num-runs " k-points: "
		 min-iters "-" max-iters ", mean = "  mean-iters)
	  (if (defined? 'sort)  ; sort was added in Guile 1.3.x
	      (let ((sorted-iters (sort eigensolver-iters <)))
		(let ((median-iters (* 0.5 (+ (list-ref sorted-iters
							(quotient num-runs 2))
					      (list-ref sorted-iters
							(- (quotient 
							    (+ num-runs 1) 2)
							   1))))))
		  (print ", median = " median-iters))))
	  (print "\nmean flops per iteration = "
		 (/ eigensolver-flops (* num-runs mean-iters)) "\n")
	  (print "mean time per iteration = "
		 (/ total-run-time (* mean-iters num-runs)) " s\n")))))

; ****************************************************************

; Define an easy way for the user to split the k-points list over multiple
; processes.  k-split-num is the number of chunks to split the k-points into,
; and k-split-index is the index of the current chunk (0 to k-split-num - 1).
(define-param k-split-num 1)
(define-param k-split-index 0)

; Split a list L into num more-or-less equal pieces, returning the piece
; given by index (in 0..num-1), along with the index in L of the first
; element of the piece, as a car pair: (first-index . piece-of-L).
(define (list-split L num index)
  (define (list-sub L start len index rest)
    (if (null? L)
	(reverse rest)
	(if (and (>= index start) (< index (+ start len)))
	    (list-sub (cdr L) start len (+ index 1) (cons (car L) rest))
	    (list-sub (cdr L) start len (+ index 1) rest))))
  (if (or (>= index num) (negative? index))
      (cons (length L) '())
      (let ((block-size (quotient (+ (length L) num -1) num)))
	(let ((start (* index block-size))
	      (len (min block-size (- (length L) (* index block-size)))))
	  (cons start (list-sub L start len 0 '()))))))

; ****************************************************************

(define current-k (vector3 0)) ; current k point in the run function
(define all-freqs '()) ; list of all freqs computed in a run

; (run) functions, to do vanilla calculations.  They all take zero or
; more "band functions."  Each function should take a single
; parameter, the band index, and is called for each band index at
; every k point.  These are typically used to output the bands.

(define (run-parity p reset-fields . band-functions)
 (set! total-run-time (+ total-run-time
  (begin-time "total elapsed time for run: "
   (set! all-freqs '())
   (set! band-range-data '())
   (set! interactive? false)  ; don't be interactive if we call (run)
   (begin-time "elapsed time for initialization: "
	       (init-params p (if reset-fields true false))
	       (if (string? reset-fields) (load-eigenvectors reset-fields)))
   (let ((k-split (list-split k-points k-split-num k-split-index)))
     (set-kpoint-index (car k-split))
     (if (zero? (car k-split))
	 (output-epsilon)) ; output epsilon immediately for 1st k block
     (if (> num-bands 0)
	 (begin
	   (map (lambda (k)
		  (set! current-k k)
		  (begin-time "elapsed time for k point: " (solve-kpoint k))
		  (set! all-freqs (cons freqs all-freqs))
		  (set! band-range-data 
			(update-band-range-data band-range-data freqs k))
		  (set! eigensolver-iters
			(append eigensolver-iters
				(list (/ iterations num-bands))))
		  (map (lambda (f)
			 (if (zero? (procedure-num-args f))
			     (f) ; f is a thunk: evaluate once per k-point
			     (do ((band 1 (+ band 1))) ((> band num-bands))
			       (f band))))
		       band-functions))
		(cdr k-split))
	   (if (> (length (cdr k-split)) 1)
	       (begin
		 (output-band-range-data band-range-data)
		 (set! gap-list (output-gaps band-range-data)))
	       (set! gap-list '()))))))))
 (set! all-freqs (reverse all-freqs)) ; put them in the right order
 (print "done.\n"))

(define run-polarization run-parity) ; backwards compatibility

; a macro to create a run function with a given name and parity
(defmacro-public define-run (name parity)
  `(define (,name . band-functions)
     (apply run-parity (append (list ,parity true) band-functions))))

(define-run run NO-PARITY)
(define-run run-zeven EVEN-Z)
(define-run run-zodd ODD-Z)
(define-run run-yeven EVEN-Y)
(define-run run-yodd ODD-Y)
(define-run run-yeven-zeven (+ EVEN-Y EVEN-Z))
(define-run run-yeven-zodd (+ EVEN-Y ODD-Z))
(define-run run-yodd-zeven (+ ODD-Y EVEN-Z))
(define-run run-yodd-zodd (+ ODD-Y ODD-Z))

(define run-even run-zeven) ; backwards compatibility
(define run-odd run-zodd) ; backwards compatibility
(define run-te run-zeven)
(define run-tm run-zodd)
(define run-te-yeven run-yeven-zeven)
(define run-te-yodd run-yodd-zeven)
(define run-tm-yeven run-yeven-zodd)
(define run-tm-yodd run-yodd-zodd)

; ****************************************************************

; Some predefined output functions (functions of the band index),
; for passing to (run).

(define (output-hfield which-band)
  (get-hfield which-band)
  (output-field))
(define (output-hfield-x which-band)
  (get-hfield which-band)
  (output-field-x))
(define (output-hfield-y which-band)
  (get-hfield which-band)
  (output-field-y))
(define (output-hfield-z which-band)
  (get-hfield which-band)
  (output-field-z))

(define (output-dfield which-band)
  (get-dfield which-band)
  (output-field))
(define (output-dfield-x which-band)
  (get-dfield which-band)
  (output-field-x))
(define (output-dfield-y which-band)
  (get-dfield which-band)
  (output-field-y))
(define (output-dfield-z which-band)
  (get-dfield which-band)
  (output-field-z))

(define (output-efield which-band)
  (get-efield which-band)
  (output-field))
(define (output-efield-x which-band)
  (get-efield which-band)
  (output-field-x))
(define (output-efield-y which-band)
  (get-efield which-band)
  (output-field-y))
(define (output-efield-z which-band)
  (get-efield which-band)
  (output-field-z))

(define (output-hpwr which-band)
  (get-hfield which-band)
  (compute-field-energy)
  (output-field))

(define (output-dpwr which-band)
  (get-dfield which-band)
  (compute-field-energy)
  (output-field))

(define (get-poynting which-band)
  (get-efield which-band)                      ; put E in cur-field
  (let ((e (field-copy cur-field)))            ; ... and copy to local var.
    (get-hfield which-band)                    ; put H in cur-field
    (field-map! cur-field                      ; write ExH to cur-field
		(lambda (e h) (vector3-cross (vector3-conj e) h))
		e cur-field)
    (cvector-field-nonbloch! cur-field)))
(define (output-poynting which-band)
  (get-poynting which-band)
  (output-field-to-file -1 (string-append filename-prefix "flux.")))
(define (output-poynting-x which-band)
  (get-poynting which-band)
  (output-field-to-file 0 (string-append filename-prefix "flux.")))
(define (output-poynting-y which-band)
  (get-poynting which-band)
  (output-field-to-file 1 (string-append filename-prefix "flux.")))
(define (output-poynting-z which-band)
  (get-poynting which-band)
  (output-field-to-file 2 (string-append filename-prefix "flux.")))

(define (get-tot-pwr which-band)
  (get-dfield which-band)
  (compute-field-energy)
  (let ((epwr (field-copy cur-field))
        (tot-pwr (rscalar-field-make cur-field)))
    (get-hfield which-band)
    (compute-field-energy)
    (field-map! tot-pwr
                (lambda (epwr hpwr) (+ epwr hpwr))
                epwr cur-field)
    (field-load tot-pwr)))
(define (output-tot-pwr which-band)
  (get-tot-pwr which-band)
  (output-field-to-file -1 (string-append filename-prefix "tot.")))

; We need a special function to evaluate band functions, since
; band functions can either be a function of the band number or
; a thunk (function of no arguments, evaluated once per k-point).
(define (apply-band-func-thunk band-func which-band eval-thunk?)
  (if (zero? (procedure-num-args band-func))
      (if eval-thunk? (band-func)) ; evaluate thunks once per k-point
      (band-func which-band)))
(define (apply-band-func band-func which-band)
  (apply-band-func-thunk band-func which-band (= which-band 1)))

; The following function returns an output function that calls
; output-func for bands with D energy in objects > min-energy.
; For example, (output-dpwr-in-objects output-dfield 0.20 some-object)
; would return an output function that would spit out the D field
; for bands with at least %20 of their D energy in some-object.
(define (output-dpwr-in-objects output-func min-energy . objects)
  (lambda (which-band)
    (get-dfield which-band)
    (compute-field-energy)
    (let ((energy (compute-energy-in-object-list objects)))
        ; output the computed energy for grepping:
	(print "dpwr:, " which-band ", "
	       (list-ref freqs (- which-band 1)) ", " energy "\n")
	(if (>= energy min-energy)
	    (apply-band-func output-func which-band)))))

; Combines zero or more band functions into one:
(define (combine-band-functions . band-funcs)
  (lambda (which-band)
    (map (lambda (f) (apply-band-func f which-band)) band-funcs)))

; Only invoke the given band functions for the specified k-point:
(define (output-at-kpoint kpoint . band-funcs)
  (let ((band-func (apply combine-band-functions band-funcs)))
    (lambda (which-band)
      (if (vector3= current-k kpoint)
	  (band-func which-band)))))

; Band functions to pick a canonical phase for the eigenstate of the
; given band based upon the spatial representation of the given field:
(define (fix-hfield-phase which-band)
  (get-hfield which-band)
  (fix-field-phase))
(define (fix-dfield-phase which-band)
  (get-dfield which-band)
  (fix-field-phase))
(define (fix-efield-phase which-band)
  (get-efield which-band)
  (fix-field-phase))

; ****************************************************************
; Here, we solve the inverse problem, that of solving for the
; wavevectors for a set of bands at a given frequency.  To do
; this, we use the fact that we can compute the group velocities
; cheaply, and thus can employ find-root-deriv (Newton's method).
; Moreover, we save information gathered while finding the k's of
; higher bands to speed the computation for lower bands.

(define (find-k p omega band-min band-max kdir
		tol kmag-guess kmag-min kmag-max . band-funcs)
  (define (ncdr n lst) (if (> n 0) (ncdr (- n 1) (cdr lst)) lst))
  (let ((num-bands-save num-bands) (k-points-save k-points)
	(nb (- band-max band-min -1)) 
	(kdir1 (cartesian->reciprocal (unit-vector3 (reciprocal->cartesian kdir))))
	; k0s is an array caching the best k value found for each band:
	(k0s (if (list? kmag-guess) (list->vector kmag-guess)
		 (make-vector (- band-max band-min -1) kmag-guess)))
	; bktab is a table (assoc. list) to memoize all (band . k) results:
	(bktab '()))
    (define ((rootfun b) k)
      (let ((tab-val (assoc (cons b k) bktab))) ; first, look in cached table
	(if tab-val 
	    (begin ; use cached result if available
	      (print "find-k " b " at " k ": " (cadr tab-val) " (cached)\n")
	      (cdr tab-val))
	    (begin ; otherwise, compute bands and cache results
	      (set! num-bands b)
	      (set! k-points (list (vector3-scale k kdir1)))
	      (run-parity p false)
	      (let ((v (compute-group-velocity-component kdir1)))
		; cache computed values:
		(map (lambda (b f v)
		       (let ((tabval (assoc 
				      (cons b (vector-ref k0s (- b band-min)))
				      bktab)))
			 (if (or (not tabval)
				 (< (abs (- f omega)) (abs (cadr tabval))))
			     (vector-set! k0s (- b band-min) k))) ; cache k0
		       (set! bktab (cons (cons (cons b k) (cons (- f omega) v))
					 bktab)))
		     (arith-sequence band-min 1 (- b band-min -1)) 
		     (ncdr (- band-min 1) freqs)
		     (ncdr (- band-min 1) v))
		; finally return (frequency - omega . derivative):
		(let ((fun (- (car (reverse freqs)) omega)))
		  (print "find-k " b " at " k ": " fun "\n")
		  (cons fun (car (reverse v)))))))))
    (randomize-fields) ; don't let previous computations interfere
    (let ((ks (reverse (map
			(lambda (b)
			  (find-root-deriv (rootfun b) tol kmag-min kmag-max
					   (vector-ref k0s (- b band-min))))
			(arith-sequence band-max -1 nb)))))
      (if band-funcs
	  (map (lambda (b k)
		 (set! num-bands b)
		 (set! k-points (list (vector3-scale k kdir1)))
		 (run-parity p false
			     (lambda (b')
			       (if (= b' b)
				   (map (lambda (f) 
					  (apply-band-func-thunk f b true))
					band-funcs)))))
	       (arith-sequence band-max -1 nb) (reverse ks)))
      (set! num-bands num-bands-save)
      (set! k-points k-points-save)
      (print parity "kvals:, " omega ", " band-min ", " band-max)
      (vector-map (lambda (k) (print ", " k)) kdir1)
      (map (lambda (k) (print ", " k)) ks) 
      (print "\n")
      ks)))

; ****************************************************************

(define (sqmatrix-diag m)
  (map (lambda (i) (sqmatrix-ref m i i))
       (arith-sequence 0 1 (sqmatrix-size m))))

(define (fix-phase-consistency old-eigs first-band)
  (let ((dots (dot-eigenvectors old-eigs first-band)))
    (let ((phases (map (lambda (d) (conj (make-polar 1 (angle d))))
		       (sqmatrix-diag dots))))
      (map (lambda (i phase) 
	     (scale-eigenvector i phase)
	     (conj phase))
	   (arith-sequence first-band 1 (length phases)) phases))))

; ****************************************************************

; Load GNU Readline support, for easier command-line editing support.
; This is not loaded in by default in Guile 1.3.2+ because readline
; is licensed under the GPL, which would have caused Guile to effectively
; be under the GPL itself.  However, since the MIT Photonic Bands package
; is under the GPL too, we can load Readline by default with no problems.

(use-modules (ice-9 readline)) (activate-readline)  ; command to activate readline is determined by configure

(set! scm-repl-prompt "mpb> ")

; ****************************************************************