/usr/src/oasis3/cheoa3/che.F90 is in oasis3-examples 3.3.beta.dfsg.1-8build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | PROGRAM che
!======================================================================
! This program simulates the atmospheric chemistry of a coupled model using
! the PRISM System Model Interface (PSMILe) to the Oasis CLIM communication
! library for field exchange. The field dimensions are realistic,
! corresponding to a T31 reduced gaussian grid, but beside the exchanges
! the model is pratically "empty" (no real physics nor dynamics).
!======================================================================
USE mod_kinds_model
USE mod_prism_proto
USE mod_prism_put_proto
USE mod_prism_get_proto
USE mod_prism_grids_writing
IMPLICIT NONE
#ifndef key_nonetCDF
#include <netcdf.inc>
#endif
!
! Grid dimensions
INTEGER, PARAMETER :: il_im = 6232, il_jm = 1, il_imjm = il_im*il_jm
!
INTEGER, PARAMETER :: jpfldout = 1 ! Number of fields sent
INTEGER, PARAMETER :: jpfldin = 1 ! Number of fields received
!
CHARACTER(len=8), DIMENSION(jpfldout) :: cl_writ ! Symb names fields sent
CHARACTER(len=8), DIMENSION(jpfldin) :: cl_read ! Symb names fields received
!
INTEGER, dimension(jpfldout) :: il_var_id_out ! ID for fields sent
INTEGER, dimension(jpfldin) :: il_var_id_in ! ID for fields received
!
! Field sent
REAL(kind=ip_realwp_p),DIMENSION(:),ALLOCATABLE :: spec1
!
! Field received
REAL(kind=ip_realwp_p),DIMENSION(:),ALLOCATABLE :: sens
!
CHARACTER(len=6), PARAMETER :: cp_modnam='toyche' ! Component model name
!
INTEGER, PARAMETER :: npas = 72 ! Number of steps for the simulation.
! We hard code this numbers but later specific PSMILe routines will be
! developed to access the relevant information in the SCC file.
!
INTEGER, PARAMETER :: il_print = 12 ! Printing interval
INTEGER, PARAMETER :: itimestep = 7200 ! Timestep in seconds
!
LOGICAL :: ll_comparal ! Logical true if component is parallel
! and if all process communicates with Oasis.
!
INTEGER :: itap, itap_sec, ji, jf, ierror
INTEGER :: il_rank
INTEGER :: il_mparout
CHARACTER(len=8) :: chcheout
CHARACTER(len=2) :: chout
INTEGER :: il_comp_id ! Component ID
INTEGER :: il_commlocal ! Component internal communicator
INTEGER :: il_nbtotproc ! Total number of processes
INTEGER :: il_nbcplproc ! Number of processes involved in the coupling
INTEGER :: il_part_id ! Local partition ID
INTEGER :: il_length ! Size of partial field for each process
INTEGER, DIMENSION(2) :: il_var_nodims(2), il_var_shape(2) ! see below
!
INTEGER :: il_flag ! Flag for grid writing
INTEGER :: il_status, il_fileid, il_varid
INTEGER, DIMENSION(2) :: ist, icnt
REAL(kind=ip_double_p),DIMENSION(il_im,il_jm) :: dla_lon, dla_lat, dla_srf
REAL(kind=ip_realwp_p),DIMENSION(il_im,il_jm) :: rla_lon, rla_lat, rla_srf
INTEGER,DIMENSION(il_im,il_jm) :: ila_msk
EXTERNAL decomp_def ! defines the decomposition
!
!======================================================================
!
! 1- PSMILe initialization
!
CALL MPI_Init (ierror)
CALL prism_init_comp_proto (il_comp_id, cp_modnam, ierror)
!
IF (ierror .NE. PRISM_Ok) THEN
WRITE (*,*) ' che : pb prism_init_comp_proto'
CALL prism_abort_proto(il_comp_id, 'che.F90','abort1')
ELSE
WRITE(*,*) 'che : prism_init_comp_proto ok '
ENDIF
!
! 2- PSMILe attribution of local communicator.
!
! Either MPI_COMM_WORLD if MPI2 is used,
! Either a local communicator created by Oasis if MPI1 is used.
!
CALL prism_get_localcomm_proto(il_commlocal, ierror)
!
IF (ierror .NE. PRISM_Ok) THEN
WRITE (*,*) ' che : pb prism_init_comp_proto'
CALL prism_abort_proto(il_comp_id, 'che.F90','abort2')
ELSE
WRITE(*,*) 'che : prism_init_comp_proto ok '
ENDIF
!
! 3- Inquire if che is parallel or not and open the process log file
!
CALL MPI_Comm_Size(il_commlocal, il_nbtotproc, ierror)
CALL MPI_Comm_Rank(il_commlocal, il_rank, ierror)
!
il_mparout = 85 + il_rank
WRITE(chout,'(I2)')il_mparout
chcheout='cheout'//chout
!
OPEN(il_mparout,file=chcheout,form='formatted')
!
WRITE(il_mparout,*) 'Che: Number of processes:', il_nbtotproc
WRITE(il_mparout,*) 'Local process number:', il_rank
WRITE(il_mparout,*) 'Local communicator is : ',il_commlocal
CALL flush(il_mparout)
!
! 4- Compare the total number of processes and the number of processes
! involved in the coupling.
!
! 3 cases are illustrated here:
! . A monoprocess atm which process is involved in the coupling
! (ll_comparal = .FALSE.); put nproc_atmche=1 and ncpl_atmche=1 in
! launching script run_toyoasis3; value of il_nbcplproc has no importance.
! . A parallel atm with only the master process involved in the coupling
! (ll_comparal = .FALSE.); put nproc_atmche=3 and ncpl_atmche=1 in
! launching script run_toyoasis3; put il_nbcplproc = 1 here after.
! . A parallel atm with all processes involved in the coupling
! (ll_comparal = .TRUE.); put nproc_atmche=3 and ncpl_atmche=3 in
! launching script run_toyoasis3; put il_nbcplproc = 3 here after.
!
il_nbcplproc = 3
!
IF (il_nbcplproc .EQ. il_nbtotproc .and. il_nbtotproc .ne. 1) THEN
ll_comparal = .TRUE.
ELSE
ll_comparal = .FALSE.
ENDIF
WRITE(il_mparout,*)'ll_comparal',ll_comparal
!
! Define the grids by master proc
!
IF (il_rank.EQ.0) THEN
CALL prism_start_grids_writing(il_flag)
#ifndef key_nonetCDF
IF (il_flag .EQ. 1) THEN
!
! read and write the grid
ist(1)=1 ; ist(2)=1
icnt(1)=il_im ; icnt(2)=il_jm
il_status=NF_OPEN('toyatm_grid.nc', NF_NOWRITE, il_fileid)
il_status=NF_INQ_VARID(il_fileid, 'bt42.lon' , il_varid)
il_status=NF_GET_VARA_DOUBLE (il_fileid, il_varid, ist, icnt, &
dla_lon(:,:))
il_status=NF_INQ_VARID(il_fileid, 'bt42.lat' , il_varid)
il_status=NF_GET_VARA_DOUBLE (il_fileid, il_varid, ist, icnt, &
dla_lat(:,:))
il_status=NF_CLOSE(il_fileid)
rla_lat(:,:)=dla_lat(:,:)
rla_lon(:,:)=dla_lon(:,:)
call prism_write_grid('bt42', il_im, il_jm, rla_lon, rla_lat)
!
il_status=NF_OPEN('toyatm_mask.nc', NF_NOWRITE, il_fileid)
il_status=NF_INQ_VARID(il_fileid, 'bt42.msk' , il_varid)
il_status=NF_GET_VARA_INT (il_fileid, il_varid, ist, icnt, &
ila_msk(:,:))
il_status=NF_CLOSE(il_fileid)
call prism_write_mask('bt42', il_im, il_jm, ila_msk)
!
il_status=NF_OPEN('toyatm_area.nc', NF_NOWRITE, il_fileid)
il_status=NF_INQ_VARID(il_fileid, 'bt42.srf' , il_varid)
il_status=NF_GET_VARA_DOUBLE (il_fileid, il_varid, ist, icnt, &
dla_srf(:,:))
il_status=NF_CLOSE(il_fileid)
rla_srf(:,:)=dla_srf(:,:)
call prism_write_area('bt42', il_im, il_jm, rla_srf)
!
call prism_terminate_grids_writing()
ENDIF
#endif
ENDIF
IF (il_rank.EQ.0 .OR. ll_comparal) THEN
!
! The following steps need to be done:
! -> by the process if che is monoprocess;
! -> only by the master process, if che is parallel and only
! master process is involved in the coupling;
! -> by all processes, if che is parallel and all processes
! are involved in the coupling.
!
! 5- Define parallel partitions
! (prism_def_partition_proto is called in decomp_def)
! and allocate coupling fields accordingly
!
CALL decomp_def (il_part_id, il_length, il_imjm, &
il_rank, il_nbcplproc, ll_comparal, il_mparout)
ALLOCATE(spec1(il_length)) ; spec1(:) = 0
ALLOCATE(sens(il_length)) ; sens(:) = 0
!
! 6- PSMILe coupling fields declaration
!
il_var_nodims(1) = 1 ! rank of coupling field
il_var_nodims(2) = 1 ! number of bundles in coupling field (always 1)
il_var_shape(1)= 1 ! min index for the coupling field local dimension
il_var_shape(2)= il_length ! max index for the coupling field local dim
!
! Define name (as in namcouple) and declare each field sent by che
!
cl_writ(1)='SOTHSHSU'
!
DO jf=1, jpfldout
CALL prism_def_var_proto (il_var_id_out(jf),cl_writ(jf), il_part_id, &
il_var_nodims, PRISM_Out, il_var_shape, PRISM_Real, ierror)
END DO
!
! Define name (as in namcouple) and declare each field received by che
!
cl_read(1)='SOSENHFL'
!
DO jf=1, jpfldin
CALL prism_def_var_proto (il_var_id_in(jf), cl_read(jf), il_part_id, &
il_var_nodims, PRISM_In, il_var_shape, PRISM_Real, ierror)
END DO
!
WRITE(il_mparout, *) 'After prism_enddef_proto'
CALL flush(il_mparout)
!
! 7- PSMILe end of declaration phase
!
CALL prism_enddef_proto (ierror)
!
WRITE(il_mparout, *) 'After prism_enddef_proto'
CALL flush(il_mparout)
!
ENDIF
!
! Component model timestepping (only if involved in the coupling)
!
itap = 0
IF (il_rank.EQ.0 .OR. ll_comparal) THEN
DO itap = 1, npas
itap_sec = itimestep*(itap-1) ! Time in sec at beginning of timestep
!
WRITE (il_mparout,*) 'Che tstep (proc involved in coupling)',itap
CALL flush(il_mparout)
!
! 8- PSMILe prism_get_proto or prism_put_proto at each timestep
!
DO ji = 1,il_length
! spec1(ji) = sens(ji) + 1
spec1(ji) = 200.0 + itap
END DO
!
! Print some values
!
IF (MOD(itap,il_print).EQ.1) THEN
DO ji = 1,il_length,il_length/10
WRITE (il_mparout,'(i6,1f10.2)') ji, spec1(ji)
ENDDO
ENDIF
!
CALL prism_get_proto (il_var_id_in(1),itap_sec, sens, ierror)
WRITE(il_mparout,FMT=*)'itap_sec, ierrorsens=',itap_sec, ierror
IF ( ierror .NE. PRISM_Ok .and. ierror .LT. PRISM_Recvd) THEN
WRITE(il_mparout,FMT=1001)cl_read(1), itap_sec, ierror
WRITE(il_mparout,*)'STOP in che.F90'
CALL flush(il_mparout)
CALL prism_abort_proto(il_comp_id, 'che.F90','abort3')
ENDIF
WRITE(il_mparout,*) 'After prism_get_proto ', cl_read(1)
CALL flush(il_mparout)
!
! NB: For a real model in which only the master process would receive
! the coupling fields, the master process would have to redistribute
! the fields to the other processes. Here we did not code this.
!
CALL prism_put_proto(il_var_id_out(1), itap_sec, spec1, ierror)
IF ( ierror .NE. PRISM_Ok .and. ierror .LT. PRISM_Sent) THEN
WRITE(il_mparout,FMT=1002)cl_writ(1), itap_sec, ierror
WRITE(il_mparout,*)'STOP in che.F90'
CALL flush(il_mparout)
CALL prism_abort_proto(il_comp_id, 'che.F90','abort4')
ENDIF
WRITE(il_mparout,*) 'After prism_put_proto ', cl_writ(1)
CALL flush(il_mparout)
END DO
!
DEALLOCATE(spec1)
DEALLOCATE(sens)
!
ELSE
WRITE (il_mparout,*) 'Che tstep (proc not involved in coupling)',itap
CALL flush(il_mparout)
ENDIF
!
! 9- PSMILe termination
!
CALL prism_terminate_proto (ierror)
IF (ierror .NE. PRISM_Ok) THEN
WRITE (il_mparout,*) 'An error occured in prism_terminate = ', ierror
ENDIF
!
WRITE (il_mparout,*) 'End of toyche'
CLOSE(il_mparout)
!
call MPI_Finalize (ierror)
!
1001 FORMAT(/,'Pb in reading ',A8,/,'Time is ',I8,/,'Error code is ',I2)
1002 FORMAT(/,'Pb in writing ',A8,/,'Time is ',I8,/,'Error code is ',I2)
!
END PROGRAM che
|