/usr/x86_64-w64-mingw32/lib/ocaml/map.ml is in ocaml-mingw-w64-x86-64 4.00.1~20130426-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | (***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id$ *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type key
type +'a t
val empty: 'a t
val is_empty: 'a t -> bool
val mem: key -> 'a t -> bool
val add: key -> 'a -> 'a t -> 'a t
val singleton: key -> 'a -> 'a t
val remove: key -> 'a t -> 'a t
val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter: (key -> 'a -> unit) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal: 'a t -> int
val bindings: 'a t -> (key * 'a) list
val min_binding: 'a t -> (key * 'a)
val max_binding: 'a t -> (key * 'a)
val choose: 'a t -> (key * 'a)
val split: key -> 'a t -> 'a t * 'a option * 'a t
val find: key -> 'a t -> 'a
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
end
module Make(Ord: OrderedType) = struct
type key = Ord.t
type 'a t =
Empty
| Node of 'a t * key * 'a * 'a t * int
let height = function
Empty -> 0
| Node(_,_,_,_,h) -> h
let create l x d r =
let hl = height l and hr = height r in
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let singleton x d = Node(Empty, x, d, Empty, 1)
let bal l x d r =
let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node(ll, lv, ld, lr, _) ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node(lrl, lrv, lrd, lrr, _)->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node(rl, rv, rd, rr, _) ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node(rll, rlv, rld, rlr, _) ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec add x data = function
Empty ->
Node(Empty, x, data, Empty, 1)
| Node(l, v, d, r, h) ->
let c = Ord.compare x v in
if c = 0 then
Node(l, x, data, r, h)
else if c < 0 then
bal (add x data l) v d r
else
bal l v d (add x data r)
let rec find x = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then d
else find x (if c < 0 then l else r)
let rec mem x = function
Empty ->
false
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec min_binding = function
Empty -> raise Not_found
| Node(Empty, x, d, r, _) -> (x, d)
| Node(l, x, d, r, _) -> min_binding l
let rec max_binding = function
Empty -> raise Not_found
| Node(l, x, d, Empty, _) -> (x, d)
| Node(l, x, d, r, _) -> max_binding r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node(Empty, x, d, r, _) -> r
| Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove x = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let c = Ord.compare x v in
if c = 0 then
merge l r
else if c < 0 then
bal (remove x l) v d r
else
bal l v d (remove x r)
let rec iter f = function
Empty -> ()
| Node(l, v, d, r, _) ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node(l', v, d', r', h)
let rec mapi f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node(l', v, d', r', h)
let rec fold f m accu =
match m with
Empty -> accu
| Node(l, v, d, r, _) ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, d, r, _) -> p v d || exists p l || exists p r
(* Beware: those two functions assume that the added k is *strictly*
smaller (or bigger) than all the present keys in the tree; it
does not test for equality with the current min (or max) key.
Indeed, they are only used during the "join" operation which
respects this precondition.
*)
let rec add_min_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, h) ->
bal (add_min_binding k v l) x d r
let rec add_max_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, h) ->
bal l x d (add_max_binding k v r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node (l2, v2, d2, r2, h2)) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| _ ->
assert false
let rec filter p = function
Empty -> Empty
| Node(l, v, d, r, _) ->
(* call [p] in the expected left-to-right order *)
let l' = filter p l in
let pvd = p v d in
let r' = filter p r in
if pvd then join l' v d r' else concat l' r'
let rec partition p = function
Empty -> (Empty, Empty)
| Node(l, v, d, r, _) ->
(* call [p] in the expected left-to-right order *)
let (lt, lf) = partition p l in
let pvd = p v d in
let (rt, rf) = partition p r in
if pvd
then (join lt v d rt, concat lf rf)
else (concat lt rt, join lf v d rf)
type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
let compare cmp m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else
let c = cmp d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec cardinal = function
Empty -> 0
| Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
let rec bindings_aux accu = function
Empty -> accu
| Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let choose = min_binding
end
|