/usr/share/octave/packages/control-2.6.2/filt.m is in octave-control 2.6.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | ## Copyright (C) 2009-2014 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @dots{})
## @deftypefnx {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @var{tsam}, @dots{})
## Create discrete-time transfer function model from data in DSP format.
##
## @strong{Inputs}
## @table @var
## @item num
## Numerator or cell of numerators. Each numerator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## num@{i,j@} contains the numerator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item den
## Denominator or cell of denominators. Each denominator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## den@{i,j@} contains the denominator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item tsam
## Sampling time in seconds. If @var{tsam} is not specified,
## default value -1 (unspecified) is taken.
## @item @dots{}
## Optional pairs of properties and values.
## Type @command{set (filt)} for more information.
## @end table
##
## @strong{Outputs}
## @table @var
## @item sys
## Discrete-time transfer function model.
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'num'
## Numerator. See 'Inputs' for details.
##
## @item 'den'
## Denominator. See 'Inputs' for details.
##
## @item 'tfvar'
## String containing the transfer function variable.
##
## @item 'inv'
## Logical. True for negative powers of the transfer function variable.
##
## @item 'tsam'
## Sampling time. See 'Inputs' for details.
##
## @item 'inname'
## The name of the input channels in @var{sys}.
## Cell vector of length m containing strings.
## Default names are @code{@{'u1', 'u2', ...@}}
##
## @item 'outname'
## The name of the output channels in @var{sys}.
## Cell vector of length p containing strings.
## Default names are @code{@{'y1', 'y2', ...@}}
##
## @item 'ingroup'
## Struct with input group names as field names and
## vectors of input indices as field values.
## Default is an empty struct.
##
## @item 'outgroup'
## Struct with output group names as field names and
## vectors of output indices as field values.
## Default is an empty struct.
##
## @item 'name'
## String containing the name of the model.
##
## @item 'notes'
## String or cell of string containing comments.
##
## @item 'userdata'
## Any data type.
## @end table
##
## @strong{Example}
## @example
## @group
## 3 z^-1
## H(z^-1) = -------------------
## 1 + 4 z^-1 + 2 z^-2
##
## octave:1> H = filt ([0, 3], [1, 4, 2])
##
## Transfer function 'H' from input 'u1' to output ...
##
## 3 z^-1
## y1: -------------------
## 1 + 4 z^-1 + 2 z^-2
##
## Sampling time: unspecified
## Discrete-time model.
## @end group
## @end example
##
## @seealso{tf}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: April 2012
## Version: 0.1
function sys = filt (num = {}, den = {}, tsam = -1, varargin)
switch (nargin)
case 0 # filt ()
sys = tf ();
## sys.inv = true;
return;
case 1 # filt (sys), filt (matrix)
if (isa (num, "lti") || is_real_matrix (num))
sys = tf (num);
## sys.inv = true; # would be a problem for continuous-time LTI models
return;
else
print_usage ();
endif
otherwise # filt (num, den, ...)
if (! iscell (num))
num = {num};
endif
if (! iscell (den))
den = {den};
endif
## convert from z^-1 to z
## expand each channel by z^x, where x is the largest exponent of z^-1 (z^-x)
## remove trailing zeros
## such that polynomials are as short as possible
num = cellfun (@__remove_trailing_zeros__, num, "uniformoutput", false);
den = cellfun (@__remove_trailing_zeros__, den, "uniformoutput", false);
## make numerator and denominator polynomials equally long
## by adding trailing zeros
lnum = cellfun (@length, num, "uniformoutput", false);
lden = cellfun (@length, den, "uniformoutput", false);
lmax = cellfun (@max, lnum, lden, "uniformoutput", false);
num = cellfun (@postpad, num, lmax, "uniformoutput", false);
den = cellfun (@postpad, den, lmax, "uniformoutput", false);
## use standard tf constructor
## sys is stored in standard z form, not z^-1
## so we can mix it with regular transfer function models
## property "inv", true displays sys in z^-1 form
sys = tf (num, den, tsam, "inv", true, varargin{:});
endswitch
endfunction
%!shared num, den, n1, d1, n2, d2, n2e, d2e
%! num = [0, 3];
%! den = [1, 4, 2];
%! sys = filt (num, den);
%! [n1, d1] = filtdata (sys, "vector");
%! [n2, d2] = tfdata (sys, "vector");
%! n2e = [3, 0];
%! d2e = [1, 4, 2];
%!assert (n1, num, 1e-4);
%!assert (d1, den, 1e-4);
%!assert (n2, n2e, 1e-4);
%!assert (d2, d2e, 1e-4);
|