/usr/share/octave/packages/control-2.6.2/moesp.m is in octave-control 2.6.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | ## Copyright (C) 2009-2014 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{sys}, @var{x0}, @var{info}] =} moesp (@var{dat}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}, @var{info}] =} moesp (@var{dat}, @var{n}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}, @var{info}] =} moesp (@var{dat}, @var{opt}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}, @var{info}] =} moesp (@var{dat}, @var{n}, @var{opt}, @dots{})
## Estimate state-space model using @acronym{MOESP} algorithm.
## @acronym{MOESP}: Multivariable Output Error State sPace.
## If no output arguments are given, the singular values are
## plotted on the screen in order to estimate the system order.
##
## @strong{Inputs}
## @table @var
## @item dat
## iddata set containing the measurements, i.e. time-domain signals.
## @item n
## The desired order of the resulting state-space system @var{sys}.
## If not specified, @var{n} is chosen automatically according
## to the singular values and tolerances.
## @item @dots{}
## Optional pairs of keys and values. @code{'key1', value1, 'key2', value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by command @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
##
## @strong{Outputs}
## @table @var
## @item sys
## Discrete-time state-space model.
## @item x0
## Initial state vector. If @var{dat} is a multi-experiment dataset,
## @var{x0} becomes a cell vector containing an initial state vector
## for each experiment.
## @item info
## Struct containing additional information.
## @table @var
## @item info.K
## Kalman gain matrix.
## @item info.Q
## State covariance matrix.
## @item info.Ry
## Output covariance matrix.
## @item info.S
## State-output cross-covariance matrix.
## @item info.L
## Noise variance matrix factor. LL'=Ry.
## @end table
## @end table
##
##
##
## @strong{Option Keys and Values}
## @table @var
## @item 'n'
## The desired order of the resulting state-space system @var{sys}.
## @var{s} > @var{n} > 0.
##
## @item 's'
## The number of block rows @var{s} in the input and output
## block Hankel matrices to be processed. @var{s} > 0.
## In the MOESP theory, @var{s} should be larger than @var{n},
## the estimated dimension of state vector.
##
## @item 'alg', 'algorithm'
## Specifies the algorithm for computing the triangular
## factor R, as follows:
## @table @var
## @item 'C'
## Cholesky algorithm applied to the correlation
## matrix of the input-output data. Default method.
## @item 'F'
## Fast QR algorithm.
## @item 'Q'
## QR algorithm applied to the concatenated block
## Hankel matrices.
## @end table
##
## @item 'tol'
## Absolute tolerance used for determining an estimate of
## the system order. If @var{tol} >= 0, the estimate is
## indicated by the index of the last singular value greater
## than or equal to @var{tol}. (Singular values less than @var{tol}
## are considered as zero.) When @var{tol} = 0, an internally
## computed default value, @var{tol} = @var{s}*@var{eps}*SV(1), is used,
## where SV(1) is the maximal singular value, and @var{eps} is
## the relative machine precision.
## When @var{tol} < 0, the estimate is indicated by the
## index of the singular value that has the largest
## logarithmic gap to its successor. Default value is 0.
##
## @item 'rcond'
## The tolerance to be used for estimating the rank of
## matrices. If the user sets @var{rcond} > 0, the given value
## of @var{rcond} is used as a lower bound for the reciprocal
## condition number; an m-by-n matrix whose estimated
## condition number is less than 1/@var{rcond} is considered to
## be of full rank. If the user sets @var{rcond} <= 0, then an
## implicitly computed, default tolerance, defined by
## @var{rcond} = m*n*@var{eps}, is used instead, where @var{eps} is the
## relative machine precision. Default value is 0.
##
## @item 'confirm'
## Specifies whether or not the user's confirmation of the
## system order estimate is desired, as follows:
## @table @var
## @item true
## User's confirmation.
## @item false
## No confirmation. Default value.
## @end table
##
## @item 'noiseinput'
## The desired type of noise input channels.
## @table @var
## @item 'n'
## No error inputs. Default value.
## @iftex
## @tex
## $$ x_{k+1} = A x_k + B u_k $$
## $$ y_k = C x_k + D u_k $$
## @end tex
## @end iftex
## @ifnottex
## @example
## x[k+1] = A x[k] + B u[k]
## y[k] = C x[k] + D u[k]
## @end example
## @end ifnottex
##
## @item 'e'
## Return @var{sys} as a (p-by-m+p) state-space model with
## both measured input channels u and noise channels e
## with covariance matrix @var{Ry}.
## @iftex
## @tex
## $$ x_{k+1} = A x_k + B u_k + K e_k $$
## $$ y_k = C x_k + D u_k + e_k $$
## @end tex
## @end iftex
## @ifnottex
## @example
## x[k+1] = A x[k] + B u[k] + K e[k]
## y[k] = C x[k] + D u[k] + e[k]
## @end example
## @end ifnottex
##
## @item 'v'
## Return @var{sys} as a (p-by-m+p) state-space model with
## both measured input channels u and white noise channels v
## with identity covariance matrix.
## @iftex
## @tex
## $$ x_{k+1} = A x_k + B u_k + K L v_k $$
## $$ y_k = C x_k + D u_k + L v_k $$
## $$ e = L v, \\ L L^T = R_y $$
## @end tex
## @end iftex
## @ifnottex
## @example
## x[k+1] = A x[k] + B u[k] + K L v[k]
## y[k] = C x[k] + D u[k] + L v[k]
## e = L v, L L' = Ry
## @end example
## @end ifnottex
##
## @item 'k'
## Return @var{sys} as a Kalman predictor for simulation.
## @iftex
## @tex
## $$ \\widehat{x}_{k+1} = A \\widehat{x}_k + B u_k + K (y_k - \\widehat{y}_k) $$
## $$ \\widehat{y}_k = C \\widehat{x}_k + D u_k $$
## @end tex
## @end iftex
## @ifnottex
## @example
## ^ ^ ^
## x[k+1] = A x[k] + B u[k] + K(y[k] - y[k])
## ^ ^
## y[k] = C x[k] + D u[k]
## @end example
## @end ifnottex
##
## @iftex
## @tex
## $$ \\widehat{x}_{k+1} = (A-KC) \\widehat{x}_k + (B-KD) u_k + K y_k $$
## $$ \\widehat{y}_k = C \\widehat{x}_k + D u_k + 0 y_k $$
## @end tex
## @end iftex
## @ifnottex
## @example
## ^ ^
## x[k+1] = (A-KC) x[k] + (B-KD) u[k] + K y[k]
## ^ ^
## y[k] = C x[k] + D u[k] + 0 y[k]
## @end example
## @end ifnottex
## @end table
## @end table
##
##
## @strong{Algorithm}@*
## Uses SLICOT IB01AD, IB01BD and IB01CD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: May 2012
## Version: 0.1
function [sys, x0, info] = moesp (varargin)
if (nargin == 0)
print_usage ();
endif
if (nargout == 0)
__slicot_identification__ ("moesp", nargout, varargin{:});
else
[sys, x0, info] = __slicot_identification__ ("moesp", nargout, varargin{:});
endif
endfunction
|