/usr/share/octave/packages/control-2.6.2/sensitivity.m is in octave-control 2.6.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | ## Copyright (C) 2009-2014 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Ms}, @var{ws}] =} sensitivity (@var{L})
## @deftypefnx{Function File} {[@var{Ms}, @var{ws}] =} sensitivity (@var{P}, @var{C})
## @deftypefnx{Function File} {[@var{Ms}, @var{ws}] =} sensitivity (@var{P}, @var{C1}, @var{C2}, @dots{})
## Return sensitivity margin @var{Ms}.
## The quantity @var{Ms} is simply the inverse of the shortest
## distance from the Nyquist curve to the critical point -1.
## Reasonable values of @var{Ms} are in the range from 1.3 to 2.
## @iftex
## @tex
## $$ M_s = ||S(j\\omega)||_{\\infty} $$
## @end tex
## @end iftex
## @ifnottex
##
## @example
## Ms = ||S(jw)||
## inf
## @end example
##
## @end ifnottex
## If no output arguments are given, the critical distance 1/Ms
## is plotted on a Nyquist diagram.
## In contrast to gain and phase margin as computed by command
## @command{margin}, the sensitivity @var{Ms} is a more robust
## criterion to assess the stability of a feedback system.
##
## @strong{Inputs}
## @table @var
## @item L
## Open loop transfer function.
## @var{L} can be any type of @acronym{LTI} system, but it must be square.
## @item P
## Plant model. Any type of @acronym{LTI} system.
## @item C
## Controller model. Any type of @acronym{LTI} system.
## @item C1, C2, @dots{}
## If several controllers are specified, command @command{sensitivity}
## computes the sensitivity @var{Ms} for each of them in combination
## with plant @var{P}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Ms
## Sensitivity margin @var{Ms} as defined in [1].
## Scalar value.
## If several controllers are specified, @var{Ms} becomes
## a row vector with as many entries as controllers.
## @item ws
## The frequency [rad/s] corresponding to the sensitivity peak.
## Scalar value.
## If several controllers are specified, @var{ws} becomes
## a row vector with as many entries as controllers.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT AB13DD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## to calculate the infinity norm of the sensitivity function.
##
## @strong{References}@*
## [1] Astr@"om, K. and H@"agglund, T. (1995)
## PID Controllers:
## Theory, Design and Tuning,
## Second Edition.
## Instrument Society of America.
##
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: August 2012
## Version: 0.1
function [ret, ws] = sensitivity (G, varargin)
if (nargin == 0)
print_usage ();
elseif (nargin == 1) # L := G
L = G;
I = eye (size (L));
S = feedback (I, L); # S = inv (I + L), S = feedback (I, L*-I, "+")
[Ms, ws] = norm (S, inf);
else # P := G, C := varargin
L = cellfun (@(C) G*C, varargin, "uniformoutput", false);
I = cellfun (@(L) eye (size (L)), L, "uniformoutput", false);
S = cellfun (@feedback, I, L, "uniformoutput", false);
[Ms, ws] = cellfun (@(S) norm (S, inf), S);
endif
if (nargout == 0)
## TODO: don't show entire Nyquist curve if critical distance becomes small on plot
if (length (Ms) > 1)
error ("sensitivity: plotting only works for a single controller");
endif
if (iscell (L))
L = L{1};
endif
if (! issiso (L))
error ("sensitivity: Nyquist plot requires SISO systems");
endif
[H, w] = __frequency_response__ (L, false, "ext");
H = H(:);
re = real (H);
im = imag (H);
Hs = freqresp (L, ws);
res = real (Hs);
ims = imag (Hs);
plot (re, im, "b", [-1, res], [0, ims], "r")
axis ("equal")
xlim (__axis_margin__ (xlim))
ylim (__axis_margin__ (ylim))
grid ("on")
title (sprintf ("Sensitivity Ms = %g (at %g rad/s)", Ms, ws))
xlabel ("Real Axis")
ylabel ("Imaginary Axis")
else
ret = Ms;
endif
endfunction
|