This file is indexed.

/usr/share/octave/packages/general-1.3.4/majle.m is in octave-general 1.3.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
## Copyright (c) 2010 Andrew V. Knyazev <andrew.knyazev@ucdenver.edu>
## Copyright (c) 2010 Merico .E. Argentati <Merico.Argentati@ucdenver.edu>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
##     3 Neither the name of the author nor the names of its contributors may be
##       used to endorse or promote products derived from this software without
##       specific prior written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%MAJLE	(Weak) Majorization check
%    S = MAJLE(X,Y) checks if the real part of X is (weakly) majorized by
%    the real part of Y, where X and Y must be numeric (full or sparse)
%    arrays. It returns S=0, if there is no weak majorization of X by Y,
%    S=1, if there is a weak majorization of X by Y, or S=2, if there is a
%    strong majorization of X by Y. The shapes of X and Y are ignored.
%    NUMEL(X) and NUMEL(Y) may be different, in which case one of them is
%    appended with zeros to match the sizes with the other and, in case of
%    any negative components, a special warning is issued.  
%
%    S = MAJLE(X,Y,MAJLETOL) allows in addition to specify the tolerance in
%    all inequalities [S,Z] = MAJLE(X,Y,MAJLETOL) also outputs a row vector
%    Z, which appears in the definition of the (weak) majorization. In the
%    traditional case, where the real vectors X and Y are of the same size,
%    Z = CUMSUM(SORT(Y,'descend')-SORT(X,'descend')). Here, X is weakly
%    majorized by Y, if MIN(Z)>0, and strongly majorized if MIN(Z)=0, see
%    http://en.wikipedia.org/wiki/Majorization
%
%    The value of MAJLETOL depends on how X and Y have been computed, i.e.,
%    on what the level of error in X or Y is. A good minimal starting point
%    should be MAJLETOL=eps*MAX(NUMEL(X),NUMEL(Y)). The default is 0. 
%
%    % Examples:
%    x = [2 2 2]; y = [1 2 3]; s = majle(x,y)
%    % returns the value 2.
%    x = [2 2 2]; y = [1 2 4]; s = majle(x,y)
%    % returns the value 1.
%    x = [2 2 2]; y = [1 2 2]; s = majle(x,y)
%    % returns the value 0.
%    x = [2 2 2]; y = [1 2 2]; [s,z] = majle(x,y)
%    % also returns the vector z = [ 0 0 -1].
%    x = [2 2 2]; y = [1 2 2]; s = majle(x,y,1)
%    % returns the value 2.
%    x = [2 2]; y = [1 2 2]; s = majle(x,y)
%    % returns the value 1 and warns on tailing with zeros
%    x = [2 2]; y = [-1 2 2]; s = majle(x,y)
%    % returns the value 0 and gives two warnings on tailing with zeros
%    x = [2 -inf]; y = [4 inf]; [s,z] = majle(x,y)
%    % returns s = 1 and z = [Inf   Inf].
%    x = [2 inf]; y = [4 inf]; [s,z] = majle(x,y)
%    % returns  s = 1 and z = [NaN NaN] and a warning on NaNs in z.
%    x=speye(2); y=sparse([0 2; -1 1]); s = majle(x,y) 
%    % returns the value 2.
%    x = [2 2; 2 2]; y = [1 3 4]; [s,z] = majle(x,y) %and 
%    x = [2 2; 2 2]+i; y = [1 3 4]-2*i; [s,z] = majle(x,y)
%    % both return s = 2 and z = [2 3 2 0]. 
%    x = [1 1 1 1 0]; y = [1 1 1 1 1 0 0]'; s = majle(x,y)
%    % returns the value 1 and warns on tailing with zeros
%
%    % One can use this function to check numerically the validity of the
%    Schur-Horn,Lidskii-Mirsky-Wielandt, and Gelfand-Naimark theorems: 
%    clear all; n=100; majleTol=n*n*eps;
%    A = randn(n,n); A = A'+A; eA = -sort(-eig(A)); dA = diag(A);
%    majle(dA,eA,majleTol) % returns the value 2
%    % which is the Schur-Horn theorem; and 
%    B=randn(n,n); B=B'+B; eB=-sort(-eig(B)); 
%    eAmB=-sort(-eig(A-B));
%    majle(eA-eB,eAmB,majleTol) % returns the value 2 
%    % which is the Lidskii-Mirsky-Wielandt theorem; finally
%    A = randn(n,n); sA = -sort(-svd(A)); 
%    B = randn(n,n); sB = -sort(-svd(B));
%    sAB = -sort(-svd(A*B));
%    majle(log2(sAB)-log2(sA), log2(sB), majleTol) % retuns the value 2
%    majle(log2(sAB)-log2(sB), log2(sA), majleTol) % retuns the value 2
%    % which are the log versions of the Gelfand-Naimark theorems

%   Tested in MATLAB 7.9.0.529 (R2009b) and Octave 3.2.3. 
function [s,z]=majle(x,y,majleTol)

    if (nargin < 2)
        error('MAJORIZATION:majle:NotEnoughInputs',...
            'Not enough input arguments.');
    end
    if (nargin > 3)
        error('MAJORIZATION:majle:TooManyInputs',...
            'Too many input arguments.');
    end
    if (nargout > 2)
        error('MAJORIZATION:majle:TooManyOutputs',...
            'Too many output arguments.');
    end

    % Assign default values to unspecified parameters
    if (nargin == 2)
        majleTol = 0;
    end

    % transform into real (row) vectors
    x=real(x); xc=reshape(x,1,numel(x)); clear x;
    y=real(y); yc=reshape(y,1,numel(y)); clear y;

    % sort both vectors in descending order
    xc=-sort(-xc); yc=-sort(-yc);

    % tail with zeros the shorter vector to make vectors of the same length
    if size(xc,2)~=size(yc,2)
        checkForNegative = (xc(end) < -majleTol) || (yc(end) < -majleTol);
        warning('MAJORIZATION:majle:ResizeVectors', ...
            'The input vectors have different sizes. Tailing with zeros.');
        yc=[yc zeros(size(xc,2)-size(yc,2),1)'];
        xc=[xc zeros(size(yc,2)-size(xc,2),1)'];
        % but warn if negative
        if checkForNegative
            warning('MAJORIZATION:majle:ResizeNegativeVectors', ...
                sprintf('%s%s\n%s\n%s', ...
                'At least one of the input vectors ',...
                'has negative components.',...
                '         Tailing with zeros is most likely senseless.',...
                '         Make sure that you know what you are doing.'));
            % sort again both vectors in descending order
            xc=-sort(-xc); yc=-sort(-yc);
        end
    end
    z=cumsum(yc-xc);

    %check for NaNs in z
    if any(isnan(z))
        warning('MAJORIZATION:majle:NaNsInComparisons', ...
            sprintf('%s%s\n%s\n%s', ...
            'At least one of the input vectors ',...
            'includes -Inf, Inf, or NaN components.',...
            '         Some comparisons could not be made. ',...
            '         Make sure that you know what you are doing.'));
    end

    if min(z) < -majleTol
        s=0;  % no majorization
    elseif abs(z(end)) <= majleTol
        s=2;   % strong majorization
    else
        s=1; % weak majorization
    end
endfunction