This file is indexed.

/usr/share/octave/packages/linear-algebra-2.2.0/lobpcg.m is in octave-linear-algebra 2.2.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
## Copyright (C) 2000-2011 A.V. Knyazev <Andrew.Knyazev@ucdenver.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU Lesser General Public License as published by the Free
## Software Foundation; either version 3 of the License, or (at your option) any
## later version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
## for more details.
##
## You should have received a copy of the GNU Lesser General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{blockVectorX}, @var{lambda}] =} lobpcg (@var{blockVectorX}, @var{operatorA})
## @deftypefnx {Function File} {[@var{blockVectorX}, @var{lambda}, @var{failureFlag}] =} lobpcg (@var{blockVectorX}, @var{operatorA})
## @deftypefnx {Function File} {[@var{blockVectorX}, @var{lambda}, @var{failureFlag}, @var{lambdaHistory}, @var{residualNormsHistory}] =} lobpcg (@var{blockVectorX}, @var{operatorA}, @var{operatorB}, @var{operatorT}, @var{blockVectorY}, @var{residualTolerance}, @var{maxIterations}, @var{verbosityLevel})
## Solves Hermitian partial eigenproblems using preconditioning.
##
## The first form outputs the array of algebraic smallest eigenvalues @var{lambda} and
## corresponding matrix of orthonormalized eigenvectors @var{blockVectorX} of the
## Hermitian (full or sparse) operator @var{operatorA} using input matrix
## @var{blockVectorX} as an initial guess, without preconditioning, somewhat
## similar to:
##
## @example
## # for real symmetric operator operatorA
## opts.issym  = 1; opts.isreal = 1; K = size (blockVectorX, 2);
## [blockVectorX, lambda] = eigs (operatorA, K, 'SR', opts);
##
## # for Hermitian operator operatorA
## K = size (blockVectorX, 2);
## [blockVectorX, lambda] = eigs (operatorA, K, 'SR');
## @end example
##
## The second form returns a convergence flag. If @var{failureFlag} is 0 then
## all the eigenvalues converged; otherwise not all converged.
##
## The third form computes smallest eigenvalues @var{lambda} and corresponding eigenvectors
## @var{blockVectorX} of the generalized eigenproblem Ax=lambda Bx, where 
## Hermitian operators @var{operatorA} and @var{operatorB} are given as functions, as
## well as a preconditioner, @var{operatorT}. The operators @var{operatorB} and
## @var{operatorT} must be in addition @emph{positive definite}. To compute the largest
## eigenpairs of @var{operatorA}, simply apply the code to @var{operatorA} multiplied by
## -1. The code does not involve @emph{any} matrix factorizations of @var{operatorA} and
## @var{operatorB}, thus, e.g., it preserves the sparsity and the structure of
## @var{operatorA} and @var{operatorB}.
##
## @var{residualTolerance} and @var{maxIterations} control tolerance and max number of
## steps, and @var{verbosityLevel} = 0, 1, or 2 controls the amount of printed
## info. @var{lambdaHistory} is a matrix with all iterative lambdas, and
## @var{residualNormsHistory} are matrices of the history of 2-norms of residuals
##
## Required input:
## @itemize @bullet
## @item
## @var{blockVectorX} (class numeric) - initial approximation to eigenvectors,
## full or sparse matrix n-by-blockSize. @var{blockVectorX} must be full rank.
## @item
## @var{operatorA} (class numeric, char, or function_handle) - the main operator
## of the eigenproblem, can be a matrix, a function name, or handle
## @end itemize
##
## Optional function input:
## @itemize @bullet
## @item
## @var{operatorB} (class numeric, char, or function_handle) - the second operator,
## if solving a generalized eigenproblem, can be a matrix, a function name, or
## handle; by default if empty, @code{operatorB = I}.
## @item
## @var{operatorT} (class char or function_handle) - the preconditioner, by
## default @code{operatorT(blockVectorX) = blockVectorX}.
## @end itemize
##
## Optional constraints input:
## @itemize @bullet
## @item
## @var{blockVectorY} (class numeric) - a full or sparse n-by-sizeY matrix of
## constraints, where sizeY < n. @var{blockVectorY} must be full rank. The
## iterations will be performed in the (operatorB-) orthogonal complement of the
## column-space of @var{blockVectorY}.
## @end itemize
##
## Optional scalar input parameters:
## @itemize @bullet
## @item
## @var{residualTolerance} (class numeric) - tolerance, by default, @code{residualTolerance = n * sqrt (eps)}
## @item
## @var{maxIterations} - max number of iterations, by default, @code{maxIterations = min (n, 20)}
## @item
## @var{verbosityLevel} - either 0 (no info), 1, or 2 (with pictures); by
## default, @code{verbosityLevel = 0}.
## @end itemize
##
## Required output:
## @itemize @bullet
## @item
## @var{blockVectorX} and @var{lambda} (class numeric) both are computed
## blockSize eigenpairs, where @code{blockSize = size (blockVectorX, 2)}
## for the initial guess @var{blockVectorX} if it is full rank.
## @end itemize
##
## Optional output:
## @itemize @bullet
## @item
## @var{failureFlag} (class integer) as described above.
## @item
## @var{lambdaHistory} (class numeric) as described above.
## @item
## @var{residualNormsHistory} (class numeric) as described above.
## @end itemize
##
## Functions @code{operatorA(blockVectorX)}, @code{operatorB(blockVectorX)} and
## @code{operatorT(blockVectorX)} must support @var{blockVectorX} being a matrix, not
## just a column vector.
##
## Every iteration involves one application of @var{operatorA} and @var{operatorB}, and
## one of @var{operatorT}.
##
## Main memory requirements: 6 (9 if @code{isempty(operatorB)=0}) matrices of the
## same size as @var{blockVectorX}, 2 matrices of the same size as @var{blockVectorY}
## (if present), and two square matrices of the size 3*blockSize.
##
## In all examples below, we use the Laplacian operator in a 20x20 square
## with the mesh size 1 which can be generated in MATLAB by running:
## @example
## A = delsq (numgrid ('S', 21));
## n = size (A, 1);
## @end example
##
## or in MATLAB and Octave by:
## @example
## [~,~,A] = laplacian ([19, 19]);
## n = size (A, 1);
## @end example
##
## Note that @code{laplacian} is a function of the specfun octave-forge package.
##
## The following Example:
## @example
## [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, 1e-5, 50, 2);
## @end example
##
## attempts to compute 8 first eigenpairs without preconditioning, but not all
## eigenpairs converge after 50 steps, so failureFlag=1.
##
## The next Example:
## @example
## blockVectorY = [];
## lambda_all = [];
## for j = 1:4
##   [blockVectorX, lambda] = lobpcg (randn (n, 2), A, blockVectorY, 1e-5, 200, 2);
##   blockVectorY           = [blockVectorY, blockVectorX];
##   lambda_all             = [lambda_all' lambda']';
##   pause;
## end
## @end example
##
## attemps to compute the same 8 eigenpairs by calling the code 4 times with
## blockSize=2 using orthogonalization to the previously founded eigenvectors.
##
## The following Example:
## @example
## R       = ichol (A, struct('michol', 'on'));
## precfun = @@(x)R\(R'\x);
## [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, [], @@(x)precfun(x), 1e-5, 60, 2);
## @end example
##
## computes the same eigenpairs in less then 25 steps, so that failureFlag=0
## using the preconditioner function @code{precfun}, defined inline. If @code{precfun}
## is defined as an octave function in a file, the function handle
## @code{@@(x)precfun(x)} can be equivalently replaced by the function name @code{precfun}. Running:
##
## @example
## [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, speye (n), @@(x)precfun(x), 1e-5, 50, 2);
## @end example
##
## produces similar answers, but is somewhat slower and needs more memory as
## technically a generalized eigenproblem with B=I is solved here.
##
## The following example for a mostly diagonally dominant sparse matrix A
## demonstrates different types of preconditioning, compared to the standard
## use of the main diagonal of A:
##
## @example
## clear all; close all;
## n       = 1000;
## M       = spdiags ([1:n]', 0, n, n);
## precfun = @@(x)M\x;
## A       = M + sprandsym (n, .1);
## Xini    = randn (n, 5);
## maxiter = 15;
## tol     = 1e-5;
## [~,~,~,~,rnp] = lobpcg (Xini, A, tol, maxiter, 1);
## [~,~,~,~,r]   = lobpcg (Xini, A, [], @@(x)precfun(x), tol, maxiter, 1);
## subplot (2,2,1), semilogy (r'); hold on;
## semilogy (rnp', ':>');
## title ('No preconditioning (top)'); axis tight;
## M(1,2)  = 2;
## precfun = @@(x)M\x; % M is no longer symmetric
## [~,~,~,~,rns] = lobpcg (Xini, A, [], @@(x)precfun(x), tol, maxiter, 1);
## subplot (2,2,2), semilogy (r'); hold on;
## semilogy (rns', '--s');
## title ('Nonsymmetric preconditioning (square)'); axis tight;
## M(1,2)  = 0;
## precfun = @@(x)M\(x+10*sin(x)); % nonlinear preconditioning
## [~,~,~,~,rnl] = lobpcg (Xini, A, [], @@(x)precfun(x), tol, maxiter, 1);
## subplot (2,2,3),  semilogy (r'); hold on;
## semilogy (rnl', '-.*');
## title ('Nonlinear preconditioning (star)'); axis tight;
## M       = abs (M - 3.5 * speye (n, n));
## precfun = @@(x)M\x;
## [~,~,~,~,rs] = lobpcg (Xini, A, [], @@(x)precfun(x), tol, maxiter, 1);
## subplot (2,2,4),  semilogy (r'); hold on;
## semilogy (rs', '-d');
## title ('Selective preconditioning (diamond)'); axis tight;
## @end example
##
## @heading References
## This main function @code{lobpcg} is a version of the preconditioned conjugate
## gradient method (Algorithm 5.1) described in A. V. Knyazev, Toward the Optimal
## Preconditioned Eigensolver:
## Locally Optimal Block Preconditioned Conjugate Gradient Method,
## SIAM Journal on Scientific Computing 23 (2001), no. 2, pp. 517-541. 
## @uref{http://dx.doi.org/10.1137/S1064827500366124}
##
## @heading Known bugs/features
## @itemize @bullet
## @item
## an excessively small requested tolerance may result in often restarts and
## instability. The code is not written to produce an eps-level accuracy! Use
## common sense.
## @item
## the code may be very sensitive to the number of eigenpairs computed,
## if there is a cluster of eigenvalues not completely included, cf.
## @example
## operatorA = diag ([1 1.99 2:99]);
## [blockVectorX, lambda] = lobpcg (randn (100, 1),operatorA, 1e-10, 80, 2);
## [blockVectorX, lambda] = lobpcg (randn (100, 2),operatorA, 1e-10, 80, 2);
## [blockVectorX, lambda] = lobpcg (randn (100, 3),operatorA, 1e-10, 80, 2);
## @end example
## @end itemize
##
## @heading Distribution
## The main distribution site: @uref{http://math.ucdenver.edu/~aknyazev/}
##
## A C-version of this code is a part of the @uref{http://code.google.com/p/blopex/}
## package and is directly available, e.g., in PETSc and HYPRE.  
## @end deftypefn

function [blockVectorX,lambda,varargout] = lobpcg(blockVectorX,operatorA,varargin)
  %Begin

  % constants

  CONVENTIONAL_CONSTRAINTS = 1;
  SYMMETRIC_CONSTRAINTS = 2;

  %Initial settings

  failureFlag = 1;
  if nargin < 2
      error('BLOPEX:lobpcg:NotEnoughInputs',...
      strcat('There must be at least 2 input agruments: ',...
          'blockVectorX and operatorA'));
  end
  if nargin > 8
      warning('BLOPEX:lobpcg:TooManyInputs',...
          strcat('There must be at most 8 input agruments ',...
          'unless arguments are passed to a function'));
  end

  if ~isnumeric(blockVectorX)
      error('BLOPEX:lobpcg:FirstInputNotNumeric',...
          'The first input argument blockVectorX must be numeric');
  end
  [n,blockSize]=size(blockVectorX);
  if blockSize > n
      error('BLOPEX:lobpcg:FirstInputFat',...
      'The first input argument blockVectorX must be tall, not fat');
  end
  if n < 6
      error('BLOPEX:lobpcg:MatrixTooSmall',...
          'The code does not work for matrices of small sizes');
  end

  if isa(operatorA,'numeric')
      nA = size(operatorA,1);
      if any(size(operatorA) ~= nA)
          error('BLOPEX:lobpcg:MatrixNotSquare',...
              'operatorA must be a square matrix or a string');
      end
      if size(operatorA) ~= n
          error('BLOPEX:lobpcg:MatrixWrongSize',...
          ['The size ' int2str(size(operatorA))...
              ' of operatorA is not the same as ' int2str(n)...
              ' - the number of rows of blockVectorX']);
      end
  end

  count_string = 0;

  operatorT = [];
  operatorB = [];
  residualTolerance = [];
  maxIterations = [];
  verbosityLevel = [];
  blockVectorY = []; sizeY = 0;
  for j = 1:nargin-2
      if isequal(size(varargin{j}),[n,n])
          if isempty(operatorB)
              operatorB = varargin{j};
          else
              error('BLOPEX:lobpcg:TooManyMatrixInputs',...
          strcat('Too many matrix input arguments. ',...
          'Preconditioner operatorT must be an M-function'));
          end
      elseif isequal(size(varargin{j},1),n) && size(varargin{j},2) < n
          if isempty(blockVectorY)
              blockVectorY = varargin{j};
              sizeY=size(blockVectorY,2);
          else
              error('BLOPEX:lobpcg:WrongConstraintsFormat',...
              'Something wrong with blockVectorY input argument');
          end
      elseif ischar(varargin{j}) || isa(varargin{j},'function_handle')
          if count_string == 0
              if isempty(operatorB)
                  operatorB = varargin{j};
                  count_string = count_string + 1;
              else
                  operatorT = varargin{j};
              end
          elseif count_string == 1
              operatorT = varargin{j};
          else
              warning('BLOPEX:lobpcg:TooManyStringFunctionHandleInputs',...
                  'Too many string or FunctionHandle input arguments');
          end
      elseif isequal(size(varargin{j}),[n,n])
          error('BLOPEX:lobpcg:WrongPreconditionerFormat',...
          'Preconditioner operatorT must be an M-function');
      elseif max(size(varargin{j})) == 1
          if isempty(residualTolerance)
              residualTolerance = varargin{j};
          elseif isempty(maxIterations)
              maxIterations = varargin{j};
          elseif isempty(verbosityLevel)
              verbosityLevel = varargin{j};
          else
              warning('BLOPEX:lobpcg:TooManyScalarInputs',...
                  'Too many scalar parameters, need only three');
          end
      elseif isempty(varargin{j})
          if isempty(operatorB)
              count_string = count_string + 1;
          elseif ~isempty(operatorT)
              count_string = count_string + 1;
          elseif ~isempty(blockVectorY)
              error('BLOPEX:lobpcg:UnrecognizedEmptyInput',...
                 ['Unrecognized empty input argument number ' int2str(j+2)]);
          end
      else
          error('BLOPEX:lobpcg:UnrecognizedInput',...
              ['Input argument number ' int2str(j+2) ' not recognized.']);
      end
  end

  if verbosityLevel
      if issparse(blockVectorX)
          fprintf(['The sparse initial guess with %i colunms '...
          'and %i raws is detected  \n'],n,blockSize);
      else
          fprintf(['The full initial guess with %i colunms '...
              'and %i raws is detected  \n'],n,blockSize);
      end
      if ischar(operatorA) 
          fprintf('The main operator is detected as an M-function %s \n',...
              operatorA);
      elseif isa(operatorA,'function_handle')
          fprintf('The main operator is detected as an M-function %s \n',...
              func2str(operatorA));
      elseif issparse(operatorA)
          fprintf('The main operator is detected as a sparse matrix \n');
      else
          fprintf('The main operator is detected as a full matrix \n');
      end
      if isempty(operatorB)
          fprintf('Solving standard eigenvalue problem, not generalized \n');
      elseif ischar(operatorB) 
          fprintf(['The second operator of the generalized eigenproblem \n'...
          'is detected as an M-function %s \n'],operatorB);
      elseif isa(operatorB,'function_handle')
          fprintf(['The second operator of the generalized eigenproblem \n'...
          'is detected as an M-function %s \n'],func2str(operatorB));
      elseif issparse(operatorB)
          fprintf(strcat('The second operator of the generalized',... 
              'eigenproblem \n is detected as a sparse matrix \n'));
      else
          fprintf(strcat('The second operator of the generalized',... 
              'eigenproblem \n is detected as a full matrix \n'));        
      end
      if isempty(operatorT)
          fprintf('No preconditioner is detected \n');
      elseif ischar(operatorT) 
          fprintf('The preconditioner is detected as an M-function %s \n',...
              operatorT);
      elseif isa(operatorT,'function_handle')
          fprintf('The preconditioner is detected as an M-function %s \n',...
              func2str(operatorT));
      end
      if isempty(blockVectorY)
          fprintf('No matrix of constraints is detected \n')
      elseif issparse(blockVectorY)
          fprintf('The sparse matrix of %i constraints is detected \n',sizeY);
      else
          fprintf('The full matrix of %i constraints is detected \n',sizeY);
      end
      if issparse(blockVectorY) ~= issparse(blockVectorX)
          warning('BLOPEX:lobpcg:SparsityInconsistent',...
              strcat('The sparsity formats of the initial guess and ',...
              'the constraints are inconsistent'));
      end
  end

  % Set defaults

  if isempty(residualTolerance)
      residualTolerance = sqrt(eps)*n;
  end
  if isempty(maxIterations)
      maxIterations = min(n,20);
  end
  if isempty(verbosityLevel)
      verbosityLevel = 0;
  end

  if verbosityLevel
      fprintf('Tolerance %e and maximum number of iterations %i \n',...
          residualTolerance,maxIterations)
  end

  %constraints preprocessing
  if isempty(blockVectorY)
      constraintStyle = 0;
  else
      %    constraintStyle = SYMMETRIC_CONSTRAINTS; % more accurate?
      constraintStyle = CONVENTIONAL_CONSTRAINTS;
  end

  if constraintStyle == CONVENTIONAL_CONSTRAINTS
      
      if isempty(operatorB)
          gramY = blockVectorY'*blockVectorY;
      else
          if isnumeric(operatorB)
              blockVectorBY = operatorB*blockVectorY;
          else
              blockVectorBY = feval(operatorB,blockVectorY);
          end
          gramY=blockVectorY'*blockVectorBY;
      end
      gramY=(gramY'+gramY)*0.5;
      if isempty(operatorB)
          blockVectorX = blockVectorX - ...
              blockVectorY*(gramY\(blockVectorY'*blockVectorX));
      else
          blockVectorX =blockVectorX - ...
              blockVectorY*(gramY\(blockVectorBY'*blockVectorX));
      end
      
  elseif constraintStyle == SYMMETRIC_CONSTRAINTS
      
      if ~isempty(operatorB)
          if isnumeric(operatorB)
              blockVectorY = operatorB*blockVectorY;
          else
              blockVectorY = feval(operatorB,blockVectorY);
          end
      end
      if isempty(operatorT)
          gramY = blockVectorY'*blockVectorY;
      else
          blockVectorTY = feval(operatorT,blockVectorY);
          gramY = blockVectorY'*blockVectorTY;
      end
      gramY=(gramY'+gramY)*0.5;
      if isempty(operatorT)
          blockVectorX = blockVectorX - ...
              blockVectorY*(gramY\(blockVectorY'*blockVectorX));
      else
          blockVectorX = blockVectorX - ...
              blockVectorTY*(gramY\(blockVectorY'*blockVectorX));
      end
      
  end

  %Making the initial vectors (operatorB-) orthonormal
  if isempty(operatorB)
      %[blockVectorX,gramXBX] = qr(blockVectorX,0);
      gramXBX=blockVectorX'*blockVectorX;
      if ~isreal(gramXBX)
          gramXBX=(gramXBX+gramXBX')*0.5;
      end
      [gramXBX,cholFlag]=chol(gramXBX);
      if  cholFlag ~= 0
          error('BLOPEX:lobpcg:ConstraintsTooTight',...
             'The initial approximation after constraints is not full rank');
      end
      blockVectorX = blockVectorX/gramXBX;
  else
      %[blockVectorX,blockVectorBX] = orth(operatorB,blockVectorX);
      if isnumeric(operatorB)
          blockVectorBX = operatorB*blockVectorX;
      else
          blockVectorBX = feval(operatorB,blockVectorX);
      end
      gramXBX=blockVectorX'*blockVectorBX;
      if ~isreal(gramXBX)
          gramXBX=(gramXBX+gramXBX')*0.5;
      end
      [gramXBX,cholFlag]=chol(gramXBX);
      if  cholFlag ~= 0
          error('BLOPEX:lobpcg:InitialNotFullRank',...
              sprintf('%s\n%s', ...
              'The initial approximation after constraints is not full rank',...
              'or/and operatorB is not positive definite'));
      end
      blockVectorX = blockVectorX/gramXBX;
      blockVectorBX = blockVectorBX/gramXBX;
  end

  % Checking if the problem is big enough for the algorithm, 
  % i.e. n-sizeY > 5*blockSize
  % Theoretically, the algorithm should be able to run if 
  % n-sizeY > 3*blockSize,
  % but the extreme cases might be unstable, so we use 5 instead of 3 here.
  if n-sizeY < 5*blockSize
      error('BLOPEX:lobpcg:MatrixTooSmall','%s\n%s', ...
      'The problem size is too small, relative to the block size.',... 
      'Try using eig() or eigs() instead.');
  end

  % Preallocation
  residualNormsHistory=zeros(blockSize,maxIterations);
  lambdaHistory=zeros(blockSize,maxIterations+1);
  condestGhistory=zeros(1,maxIterations+1);

  blockVectorBR=zeros(n,blockSize);
  blockVectorAR=zeros(n,blockSize);
  blockVectorP=zeros(n,blockSize);
  blockVectorAP=zeros(n,blockSize);
  blockVectorBP=zeros(n,blockSize);

  %Initial settings for the loop
  if isnumeric(operatorA)
      blockVectorAX = operatorA*blockVectorX;
  else
      blockVectorAX = feval(operatorA,blockVectorX);
  end

  gramXAX = full(blockVectorX'*blockVectorAX);
  gramXAX = (gramXAX + gramXAX')*0.5;
  % eig(...,'chol') uses only the diagonal and upper triangle - 
  % not true in MATLAB
  % Octave v3.2.3-4, eig() does not support inputting 'chol'
  [coordX,gramXAX]=eig(gramXAX,eye(blockSize));

  lambda=diag(gramXAX); %eig returns non-ordered eigenvalues on the diagonal

  if issparse(blockVectorX)
      coordX=sparse(coordX);
  end

  blockVectorX  =  blockVectorX*coordX;
  blockVectorAX = blockVectorAX*coordX;
  if ~isempty(operatorB)
      blockVectorBX = blockVectorBX*coordX;
  end
  clear coordX

  condestGhistory(1)=-log10(eps)/2;  %if too small cause unnecessary restarts

  lambdaHistory(1:blockSize,1)=lambda;

  activeMask = true(blockSize,1);
  % currentBlockSize = blockSize; %iterate all
  %
  % restart=1;%steepest descent

  %The main part of the method is the loop of the CG method: begin
  for iterationNumber=1:maxIterations
      
      %     %Computing the active residuals
      %     if isempty(operatorB)
      %         if currentBlockSize > 1
      %             blockVectorR(:,activeMask)=blockVectorAX(:,activeMask) - ...
      %                 blockVectorX(:,activeMask)*spdiags(lambda(activeMask),0,currentBlockSize,currentBlockSize);
      %         else
      %             blockVectorR(:,activeMask)=blockVectorAX(:,activeMask) - ...
      %                 blockVectorX(:,activeMask)*lambda(activeMask);
      %                   %to make blockVectorR full when lambda is just a scalar
      %         end
      %     else
      %         if currentBlockSize > 1
      %             blockVectorR(:,activeMask)=blockVectorAX(:,activeMask) - ...
      %                 blockVectorBX(:,activeMask)*spdiags(lambda(activeMask),0,currentBlockSize,currentBlockSize);
      %         else
      %             blockVectorR(:,activeMask)=blockVectorAX(:,activeMask) - ...
      %                 blockVectorBX(:,activeMask)*lambda(activeMask);
      %                       %to make blockVectorR full when lambda is just a scalar
      %         end
      %     end
      
      %Computing all residuals
      if isempty(operatorB)
          if blockSize > 1
              blockVectorR = blockVectorAX - ...
                  blockVectorX*spdiags(lambda,0,blockSize,blockSize);
          else
              blockVectorR = blockVectorAX - blockVectorX*lambda;
              %to make blockVectorR full when lambda is just a scalar
          end
      else
          if blockSize > 1
              blockVectorR=blockVectorAX - ...
                  blockVectorBX*spdiags(lambda,0,blockSize,blockSize);
          else
              blockVectorR = blockVectorAX - blockVectorBX*lambda;
              %to make blockVectorR full when lambda is just a scalar
          end
      end
      
      %Satisfying the constraints for the active residulas
      if constraintStyle == SYMMETRIC_CONSTRAINTS
          if isempty(operatorT)
              blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
                  blockVectorY*(gramY\(blockVectorY'*...
                  blockVectorR(:,activeMask)));
          else
              blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
                  blockVectorY*(gramY\(blockVectorTY'*...
                  blockVectorR(:,activeMask)));
          end
      end
      
      residualNorms=full(sqrt(sum(conj(blockVectorR).*blockVectorR)'));
      residualNormsHistory(1:blockSize,iterationNumber)=residualNorms;
      
      %index antifreeze
      activeMask = full(residualNorms > residualTolerance) & activeMask;
      %activeMask = full(residualNorms > residualTolerance);
      %above allows vectors back into active, which causes problems with frosen Ps
      %activeMask = full(residualNorms > 0);      %iterate all, ignore freeze
      
      currentBlockSize = sum(activeMask);
      if  currentBlockSize == 0
          failureFlag=0; %all eigenpairs converged
          break
      end
      
      %Applying the preconditioner operatorT to the active residulas
      if ~isempty(operatorT)
          blockVectorR(:,activeMask) = ...
              feval(operatorT,blockVectorR(:,activeMask));
      end
      
      if constraintStyle == CONVENTIONAL_CONSTRAINTS
          if isempty(operatorB)
              blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
                  blockVectorY*(gramY\(blockVectorY'*...
                  blockVectorR(:,activeMask)));
          else
              blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
                  blockVectorY*(gramY\(blockVectorBY'*...
                  blockVectorR(:,activeMask)));
          end
      end
      
      %Making active (preconditioned) residuals orthogonal to blockVectorX
      if isempty(operatorB)
          blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
              blockVectorX*(blockVectorX'*blockVectorR(:,activeMask));
      else
          blockVectorR(:,activeMask) = blockVectorR(:,activeMask) - ...
              blockVectorX*(blockVectorBX'*blockVectorR(:,activeMask));
      end
      
      %Making active residuals orthonormal
      if isempty(operatorB)
          %[blockVectorR(:,activeMask),gramRBR]=...
          %qr(blockVectorR(:,activeMask),0); %to increase stability
          gramRBR=blockVectorR(:,activeMask)'*blockVectorR(:,activeMask);
          if ~isreal(gramRBR)
              gramRBR=(gramRBR+gramRBR')*0.5; 
          end
          [gramRBR,cholFlag]=chol(gramRBR);
          if  cholFlag == 0
              blockVectorR(:,activeMask) = blockVectorR(:,activeMask)/gramRBR;
          else
              warning('BLOPEX:lobpcg:ResidualNotFullRank',...
                  'The residual is not full rank.');
              break
          end
      else
          if isnumeric(operatorB)
              blockVectorBR(:,activeMask) = ...
                  operatorB*blockVectorR(:,activeMask);
          else
              blockVectorBR(:,activeMask) = ...
                  feval(operatorB,blockVectorR(:,activeMask));
          end
          gramRBR=blockVectorR(:,activeMask)'*blockVectorBR(:,activeMask);
          if ~isreal(gramRBR)
              gramRBR=(gramRBR+gramRBR')*0.5; 
          end
          [gramRBR,cholFlag]=chol(gramRBR);
          if  cholFlag == 0
              blockVectorR(:,activeMask) = ...
                  blockVectorR(:,activeMask)/gramRBR;
              blockVectorBR(:,activeMask) = ...
                  blockVectorBR(:,activeMask)/gramRBR;
          else
              warning('BLOPEX:lobpcg:ResidualNotFullRankOrElse',...
              strcat('The residual is not full rank or/and operatorB ',...
              'is not positive definite.'));
              break
          end
          
      end
      clear gramRBR;
      
      if isnumeric(operatorA)
          blockVectorAR(:,activeMask) = operatorA*blockVectorR(:,activeMask);
      else
          blockVectorAR(:,activeMask) = ...
              feval(operatorA,blockVectorR(:,activeMask));
      end
      
      if iterationNumber > 1
          
          %Making active conjugate directions orthonormal
          if isempty(operatorB)
              %[blockVectorP(:,activeMask),gramPBP] = qr(blockVectorP(:,activeMask),0);
              gramPBP=blockVectorP(:,activeMask)'*blockVectorP(:,activeMask);
              if ~isreal(gramPBP)
                  gramPBP=(gramPBP+gramPBP')*0.5; 
              end
              [gramPBP,cholFlag]=chol(gramPBP);
              if  cholFlag == 0
                  blockVectorP(:,activeMask) = ...
                      blockVectorP(:,activeMask)/gramPBP;
                  blockVectorAP(:,activeMask) = ...
                      blockVectorAP(:,activeMask)/gramPBP;
              else
                  warning('BLOPEX:lobpcg:DirectionNotFullRank',...
                      'The direction matrix is not full rank.');
                  break
              end
          else
              gramPBP=blockVectorP(:,activeMask)'*blockVectorBP(:,activeMask);
              if ~isreal(gramPBP)
                  gramPBP=(gramPBP+gramPBP')*0.5; 
              end
              [gramPBP,cholFlag]=chol(gramPBP);
              if  cholFlag == 0
                  blockVectorP(:,activeMask) = ...
                      blockVectorP(:,activeMask)/gramPBP;
                  blockVectorAP(:,activeMask) = ...
                      blockVectorAP(:,activeMask)/gramPBP;
                  blockVectorBP(:,activeMask) = ...
                      blockVectorBP(:,activeMask)/gramPBP;
              else
                  warning('BLOPEX:lobpcg:DirectionNotFullRank',...
                 strcat('The direction matrix is not full rank ',...
              'or/and operatorB is not positive definite.'));
                  break
              end
          end
          clear gramPBP
      end
      
      condestGmean = mean(condestGhistory(max(1,iterationNumber-10-...
          round(log(currentBlockSize))):iterationNumber));
      
      %  restart=1;
      
      % The Raileight-Ritz method for [blockVectorX blockVectorR blockVectorP]
      
      if  residualNorms > eps^0.6
          explicitGramFlag = 0;
      else
          explicitGramFlag = 1;  %suggested by Garrett Moran, private 
      end
      
      activeRSize=size(blockVectorR(:,activeMask),2);
      if iterationNumber == 1
          activePSize=0;
          restart=1;
      else
          activePSize=size(blockVectorP(:,activeMask),2);
          restart=0;
      end
      
      gramXAR=full(blockVectorAX'*blockVectorR(:,activeMask));
      gramRAR=full(blockVectorAR(:,activeMask)'*blockVectorR(:,activeMask));
      gramRAR=(gramRAR'+gramRAR)*0.5;
      
      if explicitGramFlag
          gramXAX=full(blockVectorAX'*blockVectorX);
          gramXAX=(gramXAX'+gramXAX)*0.5;
          if isempty(operatorB)
              gramXBX=full(blockVectorX'*blockVectorX);
              gramRBR=full(blockVectorR(:,activeMask)'*...
                  blockVectorR(:,activeMask));
              gramXBR=full(blockVectorX'*blockVectorR(:,activeMask));
          else
              gramXBX=full(blockVectorBX'*blockVectorX);
              gramRBR=full(blockVectorBR(:,activeMask)'*...
                  blockVectorR(:,activeMask));
              gramXBR=full(blockVectorBX'*blockVectorR(:,activeMask));
          end
          gramXBX=(gramXBX'+gramXBX)*0.5;
          gramRBR=(gramRBR'+gramRBR)*0.5;
          
      end
      
      for cond_try=1:2,           %cond_try == 2 when restart
          
          if ~restart
              gramXAP=full(blockVectorAX'*blockVectorP(:,activeMask));
              gramRAP=full(blockVectorAR(:,activeMask)'*...
                  blockVectorP(:,activeMask));
              gramPAP=full(blockVectorAP(:,activeMask)'*...
                  blockVectorP(:,activeMask));
              gramPAP=(gramPAP'+gramPAP)*0.5;
              
              if explicitGramFlag
                  gramA = [ gramXAX     gramXAR     gramXAP
                      gramXAR'    gramRAR     gramRAP
                      gramXAP'     gramRAP'    gramPAP ];
              else
                  gramA = [ diag(lambda)  gramXAR  gramXAP
                      gramXAR'      gramRAR  gramRAP
                      gramXAP'      gramRAP'  gramPAP ];
              end
              
              clear gramXAP  gramRAP gramPAP
              
              if isempty(operatorB)
                  gramXBP=full(blockVectorX'*blockVectorP(:,activeMask));
                  gramRBP=full(blockVectorR(:,activeMask)'*...
                      blockVectorP(:,activeMask));
              else
                  gramXBP=full(blockVectorBX'*blockVectorP(:,activeMask));
                  gramRBP=full(blockVectorBR(:,activeMask)'*...
                      blockVectorP(:,activeMask));
                  %or blockVectorR(:,activeMask)'*blockVectorBP(:,activeMask);
              end
              
              if explicitGramFlag
                  if isempty(operatorB)
                      gramPBP=full(blockVectorP(:,activeMask)'*...
                          blockVectorP(:,activeMask));
                  else
                      gramPBP=full(blockVectorBP(:,activeMask)'*...
                          blockVectorP(:,activeMask));
                  end
                  gramPBP=(gramPBP'+gramPBP)*0.5;
                  gramB = [ gramXBX  gramXBR  gramXBP
                      gramXBR' gramRBR  gramRBP
                      gramXBP' gramRBP' gramPBP ];
                  clear   gramPBP
              else
                  gramB=[eye(blockSize) zeros(blockSize,activeRSize) gramXBP
                      zeros(blockSize,activeRSize)' eye(activeRSize) gramRBP
                      gramXBP' gramRBP' eye(activePSize) ];
              end
              
              clear gramXBP  gramRBP;
              
          else
              
              if explicitGramFlag
                  gramA = [ gramXAX   gramXAR
                      gramXAR'    gramRAR  ];
                  gramB = [ gramXBX  gramXBR
                      gramXBR' eye(activeRSize)  ];
                  clear gramXAX gramXBX gramXBR
              else
                  gramA = [ diag(lambda)  gramXAR
                      gramXAR'        gramRAR  ];
                  gramB = eye(blockSize+activeRSize);
              end
              
              clear gramXAR gramRAR;
              
          end
          
          condestG = log10(cond(gramB))+1;
          if (condestG/condestGmean > 2 && condestG > 2 )|| condestG > 8
              %black magic - need to guess the restart
              if verbosityLevel
                  fprintf('Restart on step %i as condestG %5.4e \n',...
                      iterationNumber,condestG);
              end
              if cond_try == 1 && ~restart
                  restart=1; %steepest descent restart for stability
              else
                  warning('BLOPEX:lobpcg:IllConditioning',...
                      'Gramm matrix ill-conditioned: results unpredictable');
              end
          else
              break
          end
          
      end
      
      [gramA,gramB]=eig(gramA,gramB);
      lambda=diag(gramB(1:blockSize,1:blockSize)); 
      coordX=gramA(:,1:blockSize);
      
      clear gramA gramB
      
      if issparse(blockVectorX)
          coordX=sparse(coordX);
      end
      
      if ~restart
          blockVectorP =  blockVectorR(:,activeMask)*...
              coordX(blockSize+1:blockSize+activeRSize,:) + ...
              blockVectorP(:,activeMask)*...
              coordX(blockSize+activeRSize+1:blockSize + ...
              activeRSize+activePSize,:);
          blockVectorAP = blockVectorAR(:,activeMask)*...
              coordX(blockSize+1:blockSize+activeRSize,:) + ...
              blockVectorAP(:,activeMask)*...
              coordX(blockSize+activeRSize+1:blockSize + ...
              activeRSize+activePSize,:);
          if ~isempty(operatorB)
              blockVectorBP = blockVectorBR(:,activeMask)*...
                  coordX(blockSize+1:blockSize+activeRSize,:) + ...
                  blockVectorBP(:,activeMask)*...
                  coordX(blockSize+activeRSize+1:blockSize+activeRSize+activePSize,:);
          end
      else %use block steepest descent
          blockVectorP =   blockVectorR(:,activeMask)*...
              coordX(blockSize+1:blockSize+activeRSize,:);
          blockVectorAP = blockVectorAR(:,activeMask)*...
              coordX(blockSize+1:blockSize+activeRSize,:);
          if ~isempty(operatorB)
              blockVectorBP = blockVectorBR(:,activeMask)*...
                  coordX(blockSize+1:blockSize+activeRSize,:);
          end
      end
      
      blockVectorX = blockVectorX*coordX(1:blockSize,:) + blockVectorP;
      blockVectorAX=blockVectorAX*coordX(1:blockSize,:) + blockVectorAP;
      if ~isempty(operatorB)
          blockVectorBX=blockVectorBX*coordX(1:blockSize,:) + blockVectorBP;
      end
      clear coordX
      %%end RR
      
      lambdaHistory(1:blockSize,iterationNumber+1)=lambda;
      condestGhistory(iterationNumber+1)=condestG;
      
      if verbosityLevel
          fprintf('Iteration %i current block size %i \n',...
              iterationNumber,currentBlockSize);
          fprintf('Eigenvalues lambda %17.16e \n',lambda);
          fprintf('Residual Norms %e \n',residualNorms');
      end
  end
  %The main step of the method was the CG cycle: end

  %Postprocessing

  %Making sure blockVectorX's "exactly" satisfy the blockVectorY constrains??

  %Making sure blockVectorX's are "exactly" othonormalized by final "exact" RR
  if isempty(operatorB)
      gramXBX=full(blockVectorX'*blockVectorX);
  else
      if isnumeric(operatorB)
          blockVectorBX = operatorB*blockVectorX;
      else
          blockVectorBX = feval(operatorB,blockVectorX);
      end
      gramXBX=full(blockVectorX'*blockVectorBX);
  end
  gramXBX=(gramXBX'+gramXBX)*0.5;

  if isnumeric(operatorA)
      blockVectorAX = operatorA*blockVectorX;
  else
      blockVectorAX = feval(operatorA,blockVectorX);
  end
  gramXAX = full(blockVectorX'*blockVectorAX);
  gramXAX = (gramXAX + gramXAX')*0.5;

  %Raileigh-Ritz for blockVectorX, which is already operatorB-orthonormal
  [coordX,gramXBX] = eig(gramXAX,gramXBX);
  lambda=diag(gramXBX);

  if issparse(blockVectorX)
      coordX=sparse(coordX);
  end

  blockVectorX  =   blockVectorX*coordX;
  blockVectorAX  =  blockVectorAX*coordX;
  if ~isempty(operatorB)
      blockVectorBX  =  blockVectorBX*coordX;
  end

  %Computing all residuals
  if isempty(operatorB)
      if blockSize > 1
          blockVectorR = blockVectorAX - ...
              blockVectorX*spdiags(lambda,0,blockSize,blockSize);
      else
          blockVectorR = blockVectorAX - blockVectorX*lambda;
          %to make blockVectorR full when lambda is just a scalar
      end
  else
      if blockSize > 1
          blockVectorR=blockVectorAX - ...
              blockVectorBX*spdiags(lambda,0,blockSize,blockSize);
      else
          blockVectorR = blockVectorAX - blockVectorBX*lambda;
          %to make blockVectorR full when lambda is just a scalar
      end
  end

  residualNorms=full(sqrt(sum(conj(blockVectorR).*blockVectorR)'));
  residualNormsHistory(1:blockSize,iterationNumber)=residualNorms;

  if verbosityLevel
      fprintf('Final Eigenvalues lambda %17.16e \n',lambda);
      fprintf('Final Residual Norms %e \n',residualNorms');
  end

  if verbosityLevel == 2
      whos
      figure(491)
      semilogy((abs(residualNormsHistory(1:blockSize,1:iterationNumber-1)))');
      title('Residuals for Different Eigenpairs','fontsize',16);
      ylabel('Eucledian norm of residuals','fontsize',16);
      xlabel('Iteration number','fontsize',16);
      %axis tight;
      %axis([0 maxIterations+1 1e-15 1e3])
      set(gca,'FontSize',14);
      figure(492);
      semilogy(abs((lambdaHistory(1:blockSize,1:iterationNumber)-...
          repmat(lambda,1,iterationNumber)))');
      title('Eigenvalue errors for Different Eigenpairs','fontsize',16);
      ylabel('Estimated eigenvalue errors','fontsize',16);
      xlabel('Iteration number','fontsize',16);
      %axis tight;
      %axis([0 maxIterations+1 1e-15 1e3])
      set(gca,'FontSize',14);
      drawnow;
  end

  varargout(1)={failureFlag};
  varargout(2)={lambdaHistory(1:blockSize,1:iterationNumber)};
  varargout(3)={residualNormsHistory(1:blockSize,1:iterationNumber-1)};
end