This file is indexed.

/usr/share/octave/packages/miscellaneous-1.2.0/zigzag.m is in octave-miscellaneous 1.2.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
## Copyright (C) 2006 Fredrik Bulow <fredrik.bulow@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} zigzag (@var{mtrx})
## Returns zigzag walk-off of the elements of @var{mtrx}.
## Essentially it walks the matrix in a Z-fashion.
##  
## mat = 
##   1   4   7
##   2   5   8
##   3   6   9
## then zigzag(mat) gives the output,
## [1   2   4   7   5   3   6   8   9], by walking as
## shown in the figure from pt 1 in that order of output.
## The argument @var{mtrx} should be a MxN matrix 
##
## An example of zagzig use:
## @example
## @group
## mat = reshape(1:9,3,3);
## zigzag(mat)
## ans =[1   2   4   7   5   3   6   8   9]
##
## @end group
## @end example
##
## @end deftypefn
## @seealso{zagzig}

function rval = zigzag(mtrx)
  if nargin != 1
    print_usage;
  endif
  n=size(mtrx);
  
  if(issquare(mtrx)) #Square matrix (quick case)

    ##We create a matrix of the same size as mtrx where odd elements are
    ##1, others 0.
    odd=kron(ones(ceil(n/2)),eye(2))((1:n(1)),(1:n(2)));

    ##We transpose even elements only.
    mtrx = mtrx.*odd + (mtrx.*(1-odd))';

    ##Now we mirror the matrix. The desired vector is now the
    ##concatenation of the diagonals.
    mtrx=mtrx(:,1+size(mtrx,2)-(1:size(mtrx,2)));

    ##Picking out the diagonals.
    rval  = [];
    for i = n(2)-1:-1:1-n(1)
      rval=[rval diag(mtrx,i)'];
    endfor

  else #Not square (Slow cases)
    mtrx=mtrx(:,1+size(mtrx,2)-(1:size(mtrx,2)));

    ##Picking out the diagonals and reversing odd ones manually.
    rval  = [];
    for i = n(2)-1:-1:1-n(1)
      new = diag(mtrx,i);
      if(floor(i/2)==i/2) ##Even?
        rval=[rval new'];
      else                ##Odd!
        rval=[rval new((1+length(new))-(1:length(new)))'];
      endif
    endfor
  endif
endfunction

%!assert(zigzag(reshape(1:9,3,3)),[1   2   4   7   5   3   6   8   9])