/usr/share/octave/packages/miscellaneous-1.2.0/zigzag.m is in octave-miscellaneous 1.2.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | ## Copyright (C) 2006 Fredrik Bulow <fredrik.bulow@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} zigzag (@var{mtrx})
## Returns zigzag walk-off of the elements of @var{mtrx}.
## Essentially it walks the matrix in a Z-fashion.
##
## mat =
## 1 4 7
## 2 5 8
## 3 6 9
## then zigzag(mat) gives the output,
## [1 2 4 7 5 3 6 8 9], by walking as
## shown in the figure from pt 1 in that order of output.
## The argument @var{mtrx} should be a MxN matrix
##
## An example of zagzig use:
## @example
## @group
## mat = reshape(1:9,3,3);
## zigzag(mat)
## ans =[1 2 4 7 5 3 6 8 9]
##
## @end group
## @end example
##
## @end deftypefn
## @seealso{zagzig}
function rval = zigzag(mtrx)
if nargin != 1
print_usage;
endif
n=size(mtrx);
if(issquare(mtrx)) #Square matrix (quick case)
##We create a matrix of the same size as mtrx where odd elements are
##1, others 0.
odd=kron(ones(ceil(n/2)),eye(2))((1:n(1)),(1:n(2)));
##We transpose even elements only.
mtrx = mtrx.*odd + (mtrx.*(1-odd))';
##Now we mirror the matrix. The desired vector is now the
##concatenation of the diagonals.
mtrx=mtrx(:,1+size(mtrx,2)-(1:size(mtrx,2)));
##Picking out the diagonals.
rval = [];
for i = n(2)-1:-1:1-n(1)
rval=[rval diag(mtrx,i)'];
endfor
else #Not square (Slow cases)
mtrx=mtrx(:,1+size(mtrx,2)-(1:size(mtrx,2)));
##Picking out the diagonals and reversing odd ones manually.
rval = [];
for i = n(2)-1:-1:1-n(1)
new = diag(mtrx,i);
if(floor(i/2)==i/2) ##Even?
rval=[rval new'];
else ##Odd!
rval=[rval new((1+length(new))-(1:length(new)))'];
endif
endfor
endif
endfunction
%!assert(zigzag(reshape(1:9,3,3)),[1 2 4 7 5 3 6 8 9])
|