This file is indexed.

/usr/share/octave/packages/nurbs-1.3.7/nrbrevolve.m is in octave-nurbs 1.3.7-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
function surf = nrbrevolve(curve,pnt,vec,theta)

% 
% NRBREVOLVE: Construct a NURBS surface by revolving a NURBS curve, or
%  construct a NURBS volume by revolving a NURBS surface.
% 
% Calling Sequence:
% 
%   srf = nrbrevolve(crv,pnt,vec[,ang])
% 
% INPUT:
% 
%   crv		: NURBS curve or surface to revolve, see nrbmak.
% 
%   pnt		: Coordinates of the point used to define the axis
%               of rotation.
% 
%   vec		: Vector defining the direction of the rotation axis.
% 
%   ang		: Angle to revolve the curve, default 2*pi
%
% OUTPUT:
%
%   srf		: constructed surface or volume
% 
% Description:
% 
%   Construct a NURBS surface by revolving the profile NURBS curve around
%   an axis defined by a point and vector.
% 
% Examples:
% 
%   Construct a sphere by rotating a semicircle around a x-axis.
%
%   crv = nrbcirc(1.0,[0 0 0],0,pi);
%   srf = nrbrevolve(crv,[0 0 0],[1 0 0]);
%   nrbplot(srf,[20 20]);
%
% NOTE:
%
%   The algorithm:
%
%     1) vectrans the point to the origin (0,0,0)
%     2) rotate the vector into alignment with the z-axis
%
%     for each control point along the curve
%
%     3) determine the radius and angle of control
%        point to the z-axis
%     4) construct a circular arc in the x-y plane with 
%        this radius and start angle and sweep angle theta 
%     5) combine the arc and profile, coefs and weights.
%  
%     next control point
%
%     6) rotate and vectrans the surface back into position
%        by reversing 1 and 2.
%
%
%    Copyright (C) 2000 Mark Spink
%    Copyright (C) 2010 Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

if (nargin < 3)
  error('Not enough arguments to construct revolved surface');
end

if (nargin < 4)
  theta = 2.0*pi;
end

if (iscell (curve.knots) && numel(curve.knots) == 3)
  error('The function nrbrevolve is not yet ready to create volumes') 
end

% Translate curve the center point to the origin
if isempty(pnt)
  pnt = zeros(3,1);
end

if length(pnt) ~= 3
  error('All point and vector coordinates must be 3D');
end

% Translate and rotate the original curve or surface into alignment with the z-axis
T  = vectrans(-pnt);
angx = vecangle(vec(1),vec(3));
RY = vecroty(-angx);
vectmp = RY*[vecnorm(vec(:));1.0];
angy = vecangle(vectmp(2),vectmp(3));
RX = vecrotx(angy);
curve = nrbtform(curve,RX*RY*T);

% Construct an arc 
arc = nrbcirc(1.0,[],0.0,theta);

if (iscell (curve.knots))
% Construct the revolved volume
  coefs = zeros([4 arc.number curve.number]);
  angle = squeeze (vecangle(curve.coefs(2,:,:),curve.coefs(1,:,:)));
  radius = squeeze (vecmag(curve.coefs(1:2,:,:)));
  for i = 1:curve.number(1)  
    for j = 1:curve.number(2)  
      coefs(:,:,i,j) = vecrotz(angle(i,j))*vectrans([0.0 0.0 curve.coefs(3,i,j)])*...
          vecscale([radius(i,j) radius(i,j)])*arc.coefs;
      coefs(4,:,i,j) = coefs(4,:,i,j)*curve.coefs(4,i,j);
	end
  end
  surf = nrbmak(coefs,{arc.knots, curve.knots{:}});
else
% Construct the revolved surface
  coefs = zeros(4, arc.number, curve.number);
  angle = vecangle(curve.coefs(2,:),curve.coefs(1,:));
  radius = vecmag(curve.coefs(1:2,:));
  for i = 1:curve.number  
    coefs(:,:,i) = vecrotz(angle(i))*vectrans([0.0 0.0 curve.coefs(3,i)])*...
          vecscale([radius(i) radius(i)])*arc.coefs;
    coefs(4,:,i) = coefs(4,:,i)*curve.coefs(4,i);
  end
  surf = nrbmak(coefs,{arc.knots, curve.knots});
end

% Rotate and vectrans the surface back into position
T = vectrans(pnt);
RX = vecrotx(-angy);
RY = vecroty(angx);
surf = nrbtform(surf,T*RY*RX);  

end

%!demo
%! sphere = nrbrevolve(nrbcirc(1,[],0.0,pi),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(sphere,[40 40],'light','on');
%! title('Ball and tori - surface construction by revolution');
%! hold on;
%! torus = nrbrevolve(nrbcirc(0.2,[0.9 1.0]),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(torus,[40 40],'light','on');
%! nrbplot(nrbtform(torus,vectrans([-1.8])),[20 10],'light','on');
%! hold off;

%!demo
%! pnts = [3.0 5.5 5.5 1.5 1.5 4.0 4.5;
%!         0.0 0.0 0.0 0.0 0.0 0.0 0.0;
%!         0.5 1.5 4.5 3.0 7.5 6.0 8.5];
%! crv = nrbmak(pnts,[0 0 0 1/4 1/2 3/4 3/4 1 1 1]);
%! 
%! xx = vecrotz(deg2rad(25))*vecroty(deg2rad(15))*vecrotx(deg2rad(20));
%! nrb = nrbtform(crv,vectrans([5 5])*xx);
%!
%! pnt = [5 5 0]';
%! vec = xx*[0 0 1 1]';
%! srf = nrbrevolve(nrb,pnt,vec(1:3));
%!
%! p = nrbeval(srf,{linspace(0.0,1.0,100) linspace(0.0,1.0,100)});
%! surfl(squeeze(p(1,:,:)),squeeze(p(2,:,:)),squeeze(p(3,:,:)));
%! title('Construct of a 3D surface by revolution of a curve.');
%! shading interp;
%! colormap(copper);
%! axis equal;
%! hold off

%!demo
%! crv1 = nrbcirc(1,[0 0],0, pi/2);
%! crv2 = nrbcirc(2,[0 0],0, pi/2);
%! srf = nrbruled (crv1, crv2);
%! srf = nrbtform (srf, [1 0 0 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]);
%! vol = nrbrevolve (srf, [0 0 0], [1 0 0], pi/2);
%! nrbplot(vol, [30 30 30], 'light', 'on')