/usr/share/octave/packages/nurbs-1.3.7/nrbrevolve.m is in octave-nurbs 1.3.7-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | function surf = nrbrevolve(curve,pnt,vec,theta)
%
% NRBREVOLVE: Construct a NURBS surface by revolving a NURBS curve, or
% construct a NURBS volume by revolving a NURBS surface.
%
% Calling Sequence:
%
% srf = nrbrevolve(crv,pnt,vec[,ang])
%
% INPUT:
%
% crv : NURBS curve or surface to revolve, see nrbmak.
%
% pnt : Coordinates of the point used to define the axis
% of rotation.
%
% vec : Vector defining the direction of the rotation axis.
%
% ang : Angle to revolve the curve, default 2*pi
%
% OUTPUT:
%
% srf : constructed surface or volume
%
% Description:
%
% Construct a NURBS surface by revolving the profile NURBS curve around
% an axis defined by a point and vector.
%
% Examples:
%
% Construct a sphere by rotating a semicircle around a x-axis.
%
% crv = nrbcirc(1.0,[0 0 0],0,pi);
% srf = nrbrevolve(crv,[0 0 0],[1 0 0]);
% nrbplot(srf,[20 20]);
%
% NOTE:
%
% The algorithm:
%
% 1) vectrans the point to the origin (0,0,0)
% 2) rotate the vector into alignment with the z-axis
%
% for each control point along the curve
%
% 3) determine the radius and angle of control
% point to the z-axis
% 4) construct a circular arc in the x-y plane with
% this radius and start angle and sweep angle theta
% 5) combine the arc and profile, coefs and weights.
%
% next control point
%
% 6) rotate and vectrans the surface back into position
% by reversing 1 and 2.
%
%
% Copyright (C) 2000 Mark Spink
% Copyright (C) 2010 Rafael Vazquez
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if (nargin < 3)
error('Not enough arguments to construct revolved surface');
end
if (nargin < 4)
theta = 2.0*pi;
end
if (iscell (curve.knots) && numel(curve.knots) == 3)
error('The function nrbrevolve is not yet ready to create volumes')
end
% Translate curve the center point to the origin
if isempty(pnt)
pnt = zeros(3,1);
end
if length(pnt) ~= 3
error('All point and vector coordinates must be 3D');
end
% Translate and rotate the original curve or surface into alignment with the z-axis
T = vectrans(-pnt);
angx = vecangle(vec(1),vec(3));
RY = vecroty(-angx);
vectmp = RY*[vecnorm(vec(:));1.0];
angy = vecangle(vectmp(2),vectmp(3));
RX = vecrotx(angy);
curve = nrbtform(curve,RX*RY*T);
% Construct an arc
arc = nrbcirc(1.0,[],0.0,theta);
if (iscell (curve.knots))
% Construct the revolved volume
coefs = zeros([4 arc.number curve.number]);
angle = squeeze (vecangle(curve.coefs(2,:,:),curve.coefs(1,:,:)));
radius = squeeze (vecmag(curve.coefs(1:2,:,:)));
for i = 1:curve.number(1)
for j = 1:curve.number(2)
coefs(:,:,i,j) = vecrotz(angle(i,j))*vectrans([0.0 0.0 curve.coefs(3,i,j)])*...
vecscale([radius(i,j) radius(i,j)])*arc.coefs;
coefs(4,:,i,j) = coefs(4,:,i,j)*curve.coefs(4,i,j);
end
end
surf = nrbmak(coefs,{arc.knots, curve.knots{:}});
else
% Construct the revolved surface
coefs = zeros(4, arc.number, curve.number);
angle = vecangle(curve.coefs(2,:),curve.coefs(1,:));
radius = vecmag(curve.coefs(1:2,:));
for i = 1:curve.number
coefs(:,:,i) = vecrotz(angle(i))*vectrans([0.0 0.0 curve.coefs(3,i)])*...
vecscale([radius(i) radius(i)])*arc.coefs;
coefs(4,:,i) = coefs(4,:,i)*curve.coefs(4,i);
end
surf = nrbmak(coefs,{arc.knots, curve.knots});
end
% Rotate and vectrans the surface back into position
T = vectrans(pnt);
RX = vecrotx(-angy);
RY = vecroty(angx);
surf = nrbtform(surf,T*RY*RX);
end
%!demo
%! sphere = nrbrevolve(nrbcirc(1,[],0.0,pi),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(sphere,[40 40],'light','on');
%! title('Ball and tori - surface construction by revolution');
%! hold on;
%! torus = nrbrevolve(nrbcirc(0.2,[0.9 1.0]),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(torus,[40 40],'light','on');
%! nrbplot(nrbtform(torus,vectrans([-1.8])),[20 10],'light','on');
%! hold off;
%!demo
%! pnts = [3.0 5.5 5.5 1.5 1.5 4.0 4.5;
%! 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
%! 0.5 1.5 4.5 3.0 7.5 6.0 8.5];
%! crv = nrbmak(pnts,[0 0 0 1/4 1/2 3/4 3/4 1 1 1]);
%!
%! xx = vecrotz(deg2rad(25))*vecroty(deg2rad(15))*vecrotx(deg2rad(20));
%! nrb = nrbtform(crv,vectrans([5 5])*xx);
%!
%! pnt = [5 5 0]';
%! vec = xx*[0 0 1 1]';
%! srf = nrbrevolve(nrb,pnt,vec(1:3));
%!
%! p = nrbeval(srf,{linspace(0.0,1.0,100) linspace(0.0,1.0,100)});
%! surfl(squeeze(p(1,:,:)),squeeze(p(2,:,:)),squeeze(p(3,:,:)));
%! title('Construct of a 3D surface by revolution of a curve.');
%! shading interp;
%! colormap(copper);
%! axis equal;
%! hold off
%!demo
%! crv1 = nrbcirc(1,[0 0],0, pi/2);
%! crv2 = nrbcirc(2,[0 0],0, pi/2);
%! srf = nrbruled (crv1, crv2);
%! srf = nrbtform (srf, [1 0 0 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]);
%! vol = nrbrevolve (srf, [0 0 0], [1 0 0], pi/2);
%! nrbplot(vol, [30 30 30], 'light', 'on')
|