This file is indexed.

/usr/share/octave/packages/nurbs-1.3.7/surfderiveval.m is in octave-nurbs 1.3.7-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
function skl = surfderiveval (n, p, U, m, q, V, P, u, v, d) 
%
% SURFDERIVEVAL: Compute the derivatives of a B-spline surface
% 
% usage: skl = surfderiveval (n, p, U, m, q, V, P, u, v, d) 
%
%  INPUT: 
%
%        n+1, m+1 = number of control points
%        p, q     = spline order
%        U, V     = knots
%        P        = control points
%        u,v      = evaluation points
%        d        = derivative order
%
%  OUTPUT:
%
%        skl (k+1, l+1) =  surface differentiated k
%                          times in the u direction and l
%                          times in the v direction
%
% Adaptation of algorithm A3.8 from the NURBS book, pg115
%
%    Copyright (C) 2009 Carlo de Falco
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

  skl = zeros (d+1, d+1);
  du = min (d, p);   
  dv = min (d, q);   

  uspan = findspan (n, p, u, U);
  for ip=0:p
      Nu(1:ip+1,ip+1) = basisfun (uspan, u, ip, U)';
  end
  
  vspan = findspan (m, q, v, V);
  for ip=0:q
      Nv(1:ip+1,ip+1) = basisfun (vspan, v, ip, V)';
  end

  pkl = surfderivcpts (n, p, U, m, q, V, P, d, uspan-p, uspan,  ...
		       vspan-q, vspan);

  for k = 0:du
    dd = min (d-k, dv);
    for l = 0:dd
      skl(k+1,l+1) =0;
      for i=0:q-l
       tmp = 0;
       for j = 0:p-k
        tmp = tmp + Nu(j+1,p-k+1) * pkl(k+1,l+1,j+1,i+1);
       end
       skl(k+1,l+1) = skl(k+1,l+1) + Nv(i+1,q-l+1)*tmp;
      end
    end
  end
  
end

%!shared srf
%!test
%! k = [0 0 0 1 1 1];
%! c = [0 1/2 1];
%! [coef(2,:,:), coef(1,:,:)] = meshgrid (c, c);
%! srf = nrbmak (coef, {k, k});
%! skl = surfderiveval (srf.number(1)-1, ...
%!                      srf.order(1)-1, ...
%!                      srf.knots{1}, ...
%!                      srf.number(2)-1, ...
%!                      srf.order(2)-1, ...
%!                      srf.knots{2},...
%!                      squeeze(srf.coefs(1,:,:)), .5, .5, 1) ;
%! assert (skl, [.5 0; 1 0])
%!test
%! srf = nrbkntins (srf, {[], rand(1,2)});
%! skl = surfderiveval (srf.number(1)-1,... 
%!                      srf.order(1)-1, ...
%!                      srf.knots{1},...
%!                      srf.number(2)-1,... 
%!                      srf.order(2)-1, ...
%!                      srf.knots{2},...
%!                      squeeze(srf.coefs(1,:,:)), .5, .5, 1) ;
%! assert (skl, [.5 0; 1 0], 100*eps)