This file is indexed.

/usr/share/octave/packages/optim-1.3.0/doc-cache is in octave-optim 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
# Created by Octave 3.8.0, Mon Feb 24 17:59:02 2014 UTC <root@brownie>
# name: cache
# type: cell
# rows: 3
# columns: 54
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
LinearRegression


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1259
 -- Function File: [P,E_VAR,R,P_VAR,Y_VAR] = LinearRegression (F,Y)
 -- Function File: [P,E_VAR,R,P_VAR,Y_VAR] = LinearRegression (F,Y,W)

     general linear regression

     determine the parameters p_j (j=1,2,...,m) such that the function
     f(x) = sum_(i=1,...,m) p_j*f_j(x) is the best fit to the given
     values y_i = f(x_i)

     parameters:
        * F is an n*m matrix with the values of the basis functions at
          the support points.  In column j give the values of f_j at the
          points x_i (i=1,2,...,n)
        * Y is a column vector of length n with the given values
        * W is n column vector of of length n vector with the weights of
          data points

     return values:
        * P is the vector of length m with the estimated values of the
          parameters
        * E_VAR is the estimated variance of the difference between
          fitted and measured values
        * R is the weighted norm of the residual
        * P_VAR is the estimated variance of the parameters p_j
        * Y_VAR is the estimated variance of the dependend variables

     Caution: do NOT request Y_VAR for large data sets, as a n by n
     matrix is generated

     See also: regress,leasqr,nonlin_curvefit,polyfit,wpolyfit,expfit.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
general linear regression



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
adsmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1909
ADSMAX  Alternating directions method for direct search optimization.
        [x, fmax, nf] = ADSMAX(FUN, x0, STOPIT, SAVIT, P) attempts to
        maximize the function FUN, using the starting vector x0.
        The alternating directions direct search method is used.
        Output arguments:
               x    = vector yielding largest function value found,
               fmax = function value at x,
               nf   = number of function evaluations.
        The iteration is terminated when either
               - the relative increase in function value between successive
                 iterations is <= STOPIT(1) (default 1e-3),
               - STOPIT(2) function evaluations have been performed
                 (default inf, i.e., no limit), or
               - a function value equals or exceeds STOPIT(3)
                 (default inf, i.e., no test on function values).
        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
        If a non-empty fourth parameter string SAVIT is present, then
        `SAVE SAVIT x fmax nf' is executed after each inner iteration.
        By default, the search directions are the co-ordinate directions.
        The columns of a fifth parameter matrix P specify alternative search
        directions (P = EYE is the default).
        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
            and in function calls, x has the same shape as x0.
        ADSMAX(fun, x0, STOPIT, SAVIT, P, P1, P2,...) allows additional
        arguments to be passed to fun, via feval(fun,x,P1,P2,...).
     Reference:
     N. J. Higham, Optimization by direct search in matrix computations,
        SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
     N. J. Higham, Accuracy and Stability of Numerical Algorithms,
        Second edition, Society for Industrial and Applied Mathematics,
        Philadelphia, PA, 2002; sec. 20.5.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
ADSMAX  Alternating directions method for direct search optimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
battery


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 474
 battery.m: repeatedly call bfgs using a battery of 
 start values, to attempt to find global min
 of a nonconvex function

 INPUTS:
 func: function to mimimize
 args: args of function
 minarg: argument to minimize w.r.t. (usually = 1)
 startvals: kxp matrix of values to try for sure (don't include all zeros, that's automatic)
 max iters per start value
 number of additional random start values to try

 OUTPUT: theta - the best value found - NOT iterated to convergence



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 battery.m: repeatedly call bfgs using a battery of 
 start values, to attempt t



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bfgsmin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1747
 bfgsmin: bfgs or limited memory bfgs minimization of function

 Usage: [x, obj_value, convergence, iters] = bfgsmin(f, args, control)

 The function must be of the form
 [value, return_2,..., return_m] = f(arg_1, arg_2,..., arg_n)
 By default, minimization is w.r.t. arg_1, but it can be done
 w.r.t. any argument that is a vector. Numeric derivatives are
 used unless analytic derivatives are supplied. See bfgsmin_example.m
 for methods.

 Arguments:
 * f: name of function to minimize (string)
 * args: a cell array that holds all arguments of the function
 	The argument with respect to which minimization is done
 	MUST be a vector
 * control: an optional cell array of 1-8 elements. If a cell
   array shorter than 8 elements is provided, the trailing elements
   are provided with default values.
 	* elem 1: maximum iterations  (positive integer, or -1 or Inf for unlimited (default))
 	* elem 2: verbosity
 		0 = no screen output (default)
 		1 = only final results
 		2 = summary every iteration
 		3 = detailed information
 	* elem 3: convergence criterion
 		1 = strict (function, gradient and param change) (default)
 		0 = weak - only function convergence required
 	* elem 4: arg in f_args with respect to which minimization is done (default is first)
 	* elem 5: (optional) Memory limit for lbfgs. If it's a positive integer
 		then lbfgs will be use. Otherwise ordinary bfgs is used
 	* elem 6: function change tolerance, default 1e-12
 	* elem 7: parameter change tolerance, default 1e-6
 	* elem 8: gradient tolerance, default 1e-5

 Returns:
 * x: the minimizer
 * obj_value: the value of f() at x
 * convergence: 1 if normal conv, other values if not
 * iters: number of iterations performed

 Example: see bfgsmin_example.m



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 bfgsmin: bfgs or limited memory bfgs minimization of function



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
bfgsmin_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
 initial values



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
 initial values




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
brent_line_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1082
 -- Function File: [S,V,N] brent_line_min ( F,DF,ARGS,CTL )
     Line minimization of f along df

     Finds minimum of f on line x0 + dx*w | a < w < b by bracketing.  a
     and b are passed through argument ctl.

     Arguments
--------------

        * F : string : Name of function.  Must return a real value
        * ARGS : cell : Arguments passed to f or RxC : f's only
          argument.  x0 must be at ARGS{ CTL(2) }
        * CTL : 5 : (optional) Control variables, described below.

     Returned values
--------------------

        * S : 1 : Minimum is at x0 + s*dx
        * V : 1 : Value of f at x0 + s*dx
        * NEV : 1 : Number of function evaluations

     Control Variables
----------------------

        * CTL(1) : Upper bound for error on s Default=sqrt(eps)
        * CTL(2) : Position of minimized argument in args Default= 1
        * CTL(3) : Maximum number of function evaluations Default= inf
        * CTL(4) : a Default=-inf
        * CTL(5) : b Default= inf

     Default values will be used if ctl is not passed or if nan values
     are given.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Line minimization of f along df



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cauchy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 766
 -- Function File: cauchy (N, R, X, F )
     Return the Taylor coefficients and numerical differentiation of a
     function F for the first N-1 coefficients or derivatives using the
     fft.  N is the number of points to evaluate, R is the radius of
     convergence, needs to be chosen less then the smallest singularity,
     X is point to evaluate the Taylor expansion or differentiation.
     For example,

     If X is a scalar, the function F is evaluated in a row vector of
     length N.  If X is a column vector, F is evaluated in a matrix of
     length(x)-by-N elements and must return a matrix of the same size.

          d = cauchy(16, 1.5, 0, @(x) exp(x));
          => d(2) = 1.0000 # first (2-1) derivative of function f (index starts from zero)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the Taylor coefficients and numerical differentiation of a
function F for



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
cdiff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1377
 c = cdiff (func,wrt,N,dfunc,stack,dx) - Code for num. differentiation
   = "function df = dfunc (var1,..,dvar,..,varN) .. endfunction
 
 Returns a string of octave code that defines a function 'dfunc' that
 returns the derivative of 'func' with respect to it's 'wrt'th
 argument.

 The derivatives are obtained by symmetric finite difference.

 dfunc()'s return value is in the same format as that of  ndiff()

 func  : string : name of the function to differentiate

 wrt   : int    : position, in argument list, of the differentiation
                  variable.                                Default:1

 N     : int    : total number of arguments taken by 'func'. 
                  If N=inf, dfunc will take variable argument list.
                                                         Default:wrt

 dfunc : string : Name of the octave function that returns the
                   derivatives.                   Default:['d',func]

 stack : string : Indicates whether 'func' accepts vertically
                  (stack="rstack") or horizontally (stack="cstack")
                  arguments. Any other string indicates that 'func'
                  does not allow stacking.                Default:''

 dx    : real   : Step used in the symmetric difference scheme.
                                                  Default:10*sqrt(eps)

 See also : ndiff, eval, todisk



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
 c = cdiff (func,wrt,N,dfunc,stack,dx) - Code for num.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cg_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2396
 -- Function File: [X0,V,NEV] cg_min ( F,DF,ARGS,CTL )
     NonLinear Conjugate Gradient method to minimize function F.

     Arguments
--------------

        * F : string : Name of function.  Return a real value
        * DF : string : Name of f's derivative.  Returns a (R*C) x 1
          vector
        * ARGS: cell : Arguments passed to f.
        * CTL : 5-vec : (Optional) Control variables, described below

     Returned values
--------------------

        * X0 : matrix : Local minimum of f
        * V : real : Value of f in x0
        * NEV : 1 x 2 : Number of evaluations of f and of df

     Control Variables
----------------------

        * CTL(1) : 1 or 2 : Select stopping criterion amongst :
        * CTL(1)==0 : Default value
        * CTL(1)==1 : Stopping criterion : Stop search when value
          doesn't improve, as tested by ctl(2) > Deltaf/max(|f(x)|,1)
          where Deltaf is the decrease in f observed in the last
          iteration (each iteration consists R*C line searches).
        * CTL(1)==2 : Stopping criterion : Stop search when updates are
          small, as tested by ctl(2) > max { dx(i)/max(|x(i)|,1) | i in
          1..N } where dx is the change in the x that occured in the
          last iteration.
        * CTL(2) : Threshold used in stopping tests.  Default=10*eps
        * CTL(2)==0 : Default value
        * CTL(3) : Position of the minimized argument in args Default=1
        * CTL(3)==0 : Default value
        * CTL(4) : Maximum number of function evaluations Default=inf
        * CTL(4)==0 : Default value
        * CTL(5) : Type of optimization:
        * CTL(5)==1 : "Fletcher-Reves" method
        * CTL(5)==2 : "Polak-Ribiere" (Default)
        * CTL(5)==3 : "Hestenes-Stiefel" method

     CTL may have length smaller than 4.  Default values will be used if
     ctl is not passed or if nan values are given.

     Example:
-------------

     function r=df( l ) b=[1;0;-1]; r = -( 2*l{1} - 2*b +
     rand(size(l{1}))); endfunction
     function r=ff( l ) b=[1;0;-1]; r = (l{1}-b)' * (l{1}-b);
     endfunction
     ll = { [10; 2; 3] };
     ctl(5) = 3;
     [x0,v,nev]=cg_min( "ff", "df", ll, ctl )

     Comment: In general, BFGS method seems to be better performin in
     many cases but requires more computation per iteration

     See also: bfgsmin,
     http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient .




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
NonLinear Conjugate Gradient method to minimize function F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cpiv_bard


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1197
 [lb, idx, ridx, mv] = cpiv_bard (v, m[, incl])

 v: column vector; m: matrix; incl (optional): index. length (v)
 must equal rows (m). Finds column vectors w and l with w == v + m *
 l, w >= 0, l >= 0, l.' * w == 0. Chooses idx, w, and l so that
 l(~idx) == 0, l(idx) == -inv (m(idx, idx)) * v(idx), w(idx) roughly
 == 0, and w(~idx) == v(~idx) + m(idx, ~idx).' * l(idx). idx indexes
 at least everything indexed by incl, but l(incl) may be < 0. lb:
 l(idx) (column vector); idx: logical index, defined above; ridx:
 ~idx & w roughly == 0; mv: [m, v] after performing a Gauss-Jordan
 'sweep' (with gjp.m) on each diagonal element indexed by idx.
 Except the handling of incl (which enables handling of equality
 constraints in the calling code), this is called solving the
 'complementary pivot problem' (Cottle, R. W. and Dantzig, G. B.,
 'Complementary pivot theory of mathematical programming', Linear
 Algebra and Appl. 1, 102--125. References for the current
 algorithm: Bard, Y.: Nonlinear Parameter Estimation, p. 147--149,
 Academic Press, New York and London 1974; Bard, Y., 'An eclectic
 approach to nonlinear programming', Proc. ANU Sem. Optimization,
 Canberra, Austral. Nat. Univ.).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 [lb, idx, ridx, mv] = cpiv_bard (v, m[, incl])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
curvefit_stat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 751
 -- Function File: INFO = curvefit_stat (F, P, X, Y, SETTINGS)

     Frontend for computation of statistics for fitting of values,
     computed by a model function, to observed values.

     Please refer to the description of 'residmin_stat'.  The only
     differences to 'residmin_stat' are the additional arguments X
     (independent values) and Y (observations), that the model function
     F, if provided, has a second obligatory argument which will be set
     to X and is supposed to return guesses for the observations (with
     the same dimensions), and that the possibly user-supplied function
     for the jacobian of the model function has also a second obligatory
     argument which will be set to X.

     See also: residmin_stat.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Frontend for computation of statistics for fitting of values, computed
by a mode



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
d2_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2782
 [x,v,nev,h,args] = d2_min(f,d2f,args,ctl,code) - Newton-like minimization

 Minimize f(x) using 1st and 2nd derivatives. Any function w/ second
 derivatives can be minimized, as in Newton. f(x) decreases at each
 iteration, as in Levenberg-Marquardt. This function is inspired from the
 Levenberg-Marquardt algorithm found in the book "Numerical Recipes".

 ARGUMENTS :
 f    : string : Cost function's name

 d2f  : string : Name of function returning the cost (1x1), its
                 differential (1xN) and its second differential or it's
                 pseudo-inverse (NxN) (see ctl(5) below) :

                 [v,dv,d2v] = d2f (x).

 args : list   : f and d2f's arguments. By default, minimize the 1st
     or matrix : argument.

 ctl  : vector : Control arguments (see below)
      or struct

 code : string : code will be evaluated after each outer loop that
                 produced some (any) improvement. Variables visible from
                 "code" include "x", the best parameter found, "v" the
                 best value and "args", the list of all arguments. All can
                 be modified. This option can be used to re-parameterize 
                 the argument space during optimization

 CONTROL VARIABLE ctl : (optional). May be a struct or a vector of length
 ---------------------- 5 or less where NaNs are ignored. Default values
                        are written <value>.
 FIELD  VECTOR
 NAME    POS

 ftol, f N/A    : Stop search when value doesn't improve, as tested by

                   f > Deltaf/max(|f(x)|,1)

             where Deltaf is the decrease in f observed in the last
             iteration.                                     <10*sqrt(eps)>

 utol, u N/A    : Stop search when updates are small, as tested by

                   u > max { dx(i)/max(|x(i)|,1) | i in 1..N }

             where  dx is the change in the x that occured in the last
             iteration.                                              <NaN>

 dtol, d N/A    : Stop search when derivative is small, as tested by
 
                   d > norm (dv)                                     <eps>

 crit, c ctl(1) : Set one stopping criterion, 'ftol' (c=1), 'utol' (c=2)
                  or 'dtol' (c=3) to the value of by the 'tol' option. <1>

 tol, t  ctl(2) : Threshold in termination test chosen by 'crit'  <10*eps>

 narg, n ctl(3) : Position of the minimized argument in args           <1>
 maxev,m ctl(4) : Maximum number of function evaluations             <inf>
 maxout,m       : Maximum number of outer loops                      <inf>
 id2f, i ctl(5) : 0 if d2f returns the 2nd derivatives, 1 if           <0>
                  it returns its pseudo-inverse.

 verbose, v N/A : Be more or less verbose (quiet=0)                    <0>



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
 [x,v,nev,h,args] = d2_min(f,d2f,args,ctl,code) - Newton-like minimization



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dcdp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
 function prt = dcdp (f, p, dp, func[, bounds])

 This is an interface to __dfdp__.m, similar to dfdp.m, but for
 functions only of parameters 'p', not of independents 'x'. See
 dfdp.m.

 dfpdp is more general and is meant to be used instead of dcdp in
 optimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 function prt = dcdp (f, p, dp, func[, bounds])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
de_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4432
 de_min: global optimisation using differential evolution

 Usage: [x, obj_value, nfeval, convergence] = de_min(fcn, control)

 minimization of a user-supplied function with respect to x(1:D),
 using the differential evolution (DE) method based on an algorithm
 by  Rainer Storn (http://www.icsi.berkeley.edu/~storn/code.html)
 See: http://www.softcomputing.net/tevc2009_1.pdf


 Arguments:  
 ---------------
 fcn        string : Name of function. Must return a real value
 control    vector : (Optional) Control variables, described below
         or struct

 Returned values:
 ----------------
 x          vector : parameter vector of best solution
 obj_value  scalar : objective function value of best solution
 nfeval     scalar : number of function evaluations
 convergence       : 1 = best below value to reach (VTR)
                     0 = population has reached defined quality (tol)
                    -1 = some values are close to constraints/boundaries
                    -2 = max number of iterations reached (maxiter)
                    -3 = max number of functions evaluations reached (maxnfe)

 Control variable:   (optional) may be named arguments (i.e. "name",value
 ----------------    pairs), a struct, or a vector, where
                     NaN's are ignored.

 XVmin        : vector of lower bounds of initial population
                *** note: by default these are no constraints ***
 XVmax        : vector of upper bounds of initial population
 constr       : 1 -> enforce the bounds not just for the initial population
 const        : data vector (remains fixed during the minimization)
 NP           : number of population members
 F            : difference factor from interval [0, 2]
 CR           : crossover probability constant from interval [0, 1]
 strategy     : 1 --> DE/best/1/exp           7 --> DE/best/1/bin
                2 --> DE/rand/1/exp           8 --> DE/rand/1/bin
                3 --> DE/target-to-best/1/exp 9 --> DE/target-to-best/1/bin
                4 --> DE/best/2/exp           10--> DE/best/2/bin
                5 --> DE/rand/2/exp           11--> DE/rand/2/bin
                6 --> DEGL/SAW/exp            else  DEGL/SAW/bin
 refresh      : intermediate output will be produced after "refresh"
                iterations. No intermediate output will be produced
                if refresh is < 1
 VTR          : Stopping criterion: "Value To Reach"
                de_min will stop when obj_value <= VTR.
                Use this if you know which value you expect.
 tol          : Stopping criterion: "tolerance"
                stops if (best-worst)/max(1,worst) < tol
                This stops basically if the whole population is "good".
 maxnfe       : maximum number of function evaluations
 maxiter      : maximum number of iterations (generations)

       The algorithm seems to work well only if [XVmin,XVmax] covers the 
       region where the global minimum is expected.
       DE is also somewhat sensitive to the choice of the
       difference factor F. A good initial guess is to choose F from
       interval [0.5, 1], e.g. 0.8.
       CR, the crossover probability constant from interval [0, 1]
       helps to maintain the diversity of the population and is
       rather uncritical but affects strongly the convergence speed.
       If the parameters are correlated, high values of CR work better.
       The reverse is true for no correlation.
       Experiments suggest that /bin likes to have a slightly
       larger CR than /exp.
       The number of population members NP is also not very critical. A
       good initial guess is 10*D. Depending on the difficulty of the
       problem NP can be lower than 10*D or must be higher than 10*D
       to achieve convergence.

 Default Values:
 ---------------
 XVmin = [-2];
 XVmax = [ 2];
 constr= 0;
 const = [];
 NP    = 10 *D
 F     = 0.8;
 CR    = 0.9;
 strategy = 12;
 refresh  = 0;
 VTR   = -Inf;
 tol   = 1.e-3;
 maxnfe  = 1e6;
 maxiter = 1000;


 Example to find the minimum of the Rosenbrock saddle:
 ----------------------------------------------------
 Define f as:
                    function result = f(x);
                      result = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
                    end
 Then type:

 	ctl.XVmin = [-2 -2];
 	ctl.XVmax = [ 2  2];
 	[x, obj_value, nfeval, convergence] = de_min (@f, ctl);

 Keywords: global-optimisation optimisation minimisation



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
 de_min: global optimisation using differential evolution



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
deriv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 826
 -- Function File: DX = deriv (F, X0)
 -- Function File: DX = deriv (F, X0, H)
 -- Function File: DX = deriv (F, X0, H, O)
 -- Function File: DX = deriv (F, X0, H, O, N)
     Calculate derivate of function F.

     F must be a function handle or the name of a function that takes X0
     and returns a variable of equal length and orientation.  X0 must be
     a numeric vector or scalar.

     H defines the step taken for the derivative calculation.  Defaults
     to 1e-7.

     O defines the order of the calculation.  Supported values are 2
     (h^2 order) or 4 (h^4 order).  Defaults to 2.

     N defines the derivative order.  Defaults to the 1st derivative of
     the function.  Can be up to the 4th derivative.

     Reference: Numerical Methods for Mathematics, Science, and
     Engineering by John H. Mathews.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Calculate derivate of function F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dfdp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1050
 function prt = dfdp (x, f, p, dp, func[, bounds])
 numerical partial derivatives (Jacobian) df/dp for use with leasqr
 --------INPUT VARIABLES---------
 x=vec or matrix of indep var(used as arg to func) x=[x0 x1 ....]
 f=func(x,p) vector initialsed by user before each call to dfdp
 p= vec of current parameter values
 dp= fractional increment of p for numerical derivatives
      dp(j)>0 central differences calculated
      dp(j)<0 one sided differences calculated
      dp(j)=0 sets corresponding partials to zero; i.e. holds p(j) fixed
 func=function (string or handle) to calculate the Jacobian for,
      e.g. to calc Jacobian for function expsum prt=dfdp(x,f,p,dp,'expsum')
 bounds=two-column-matrix of lower and upper bounds for parameters
      If no 'bounds' options is specified to leasqr, it will call
      dfdp without the 'bounds' argument.
----------OUTPUT VARIABLES-------
 prt= Jacobian Matrix prt(i,j)=df(i)/dp(j)
================================

 dfxpdp is more general and is meant to be used instead of dfdp in
 optimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 function prt = dfdp (x, f, p, dp, func[, bounds])
 numerical partial derivative



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dfpdp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1099
 function jac = dfpdp (p, func[, hook])

 Returns Jacobian of func (p) with respect to p with finite
 differencing. The optional argument hook is a structure which can
 contain the following fields at the moment:

 hook.f: value of func(p) for p as given in the arguments

 hook.diffp: positive vector of fractional steps from given p in
 finite differencing (actual steps may be smaller if bounds are
 given). The default is .001 * ones (size (p)).

 hook.diff_onesided: logical vector, indexing elements of p for
 which only one-sided differences should be computed (faster); even
 if not one-sided, differences might not be exactly central if
 bounds are given. The default is false (size (p)).

 hook.fixed: logical vector, indexing elements of p for which zero
 should be returned instead of the guessed partial derivatives
 (useful in optimization if some parameters are not optimized, but
 are 'fixed').

 hook.lbound, hook.ubound: vectors of lower and upper parameter
 bounds (or -Inf or +Inf, respectively) to be respected in finite
 differencing. The consistency of bounds is not checked.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 function jac = dfpdp (p, func[, hook])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dfxpdp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1115
 function jac = dfxpdp (x, p, func[, hook])

 Returns Jacobian of func (p, x) with respect to p with finite
 differencing. The optional argument hook is a structure which can
 contain the following fields at the moment:

 hook.f: value of func(p, x) for p and x as given in the arguments

 hook.diffp: positive vector of fractional steps from given p in
 finite differencing (actual steps may be smaller if bounds are
 given). The default is .001 * ones (size (p));

 hook.diff_onesided: logical vector, indexing elements of p for
 which only one-sided differences should be computed (faster); even
 if not one-sided, differences might not be exactly central if
 bounds are given. The default is false (size (p)).

 hook.fixed: logical vector, indexing elements of p for which zero
 should be returned instead of the guessed partial derivatives
 (useful in optimization if some parameters are not optimized, but
 are 'fixed').

 hook.lbound, hook.ubound: vectors of lower and upper parameter
 bounds (or -Inf or +Inf, respectively) to be respected in finite
 differencing. The consistency of bounds is not checked.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
 function jac = dfxpdp (x, p, func[, hook])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expfit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1621
 USAGE  [alpha,c,rms] = expfit( deg, x1, h, y )

 Prony's method for non-linear exponential fitting

 Fit function:   \sum_1^{deg} c(i)*exp(alpha(i)*x)

 Elements of data vector y must correspond to
 equidistant x-values starting at x1 with stepsize h

 The method is fully compatible with complex linear
 coefficients c, complex nonlinear coefficients alpha
 and complex input arguments y, x1, non-zero h .
 Fit-order deg  must be a real positive integer.

 Returns linear coefficients c, nonlinear coefficients
 alpha and root mean square error rms. This method is
 known to be more stable than 'brute-force' non-linear
 least squares fitting.

 Example
    x0 = 0; step = 0.05; xend = 5; x = x0:step:xend;
    y = 2*exp(1.3*x)-0.5*exp(2*x);
    error = (rand(1,length(y))-0.5)*1e-4;
    [alpha,c,rms] = expfit(2,x0,step,y+error)

  alpha =
    2.0000
    1.3000
  c =
    -0.50000
     2.00000
  rms = 0.00028461

 The fit is very sensitive to the number of data points.
 It doesn't perform very well for small data sets.
 Theoretically, you need at least 2*deg data points, but
 if there are errors on the data, you certainly need more.

 Be aware that this is a very (very,very) ill-posed problem.
 By the way, this algorithm relies heavily on computing the
 roots of a polynomial. I used 'roots.m', if there is
 something better please use that code.

 Demo for a complex fit-function:
 deg= 2; N= 20; x1= -(1+i), x= linspace(x1,1+i/2,N).';
 h = x(2) - x(1)
 y= (2+i)*exp( (-1-2i)*x ) + (-1+3i)*exp( (2+3i)*x );
 A= 5e-2; y+= A*(randn(N,1)+randn(N,1)*i); % add complex noise
 [alpha,c,rms]= expfit( deg, x1, h, y )



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 USAGE  [alpha,c,rms] = expfit( deg, x1, h, y )



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fmin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
 alias for fminbnd



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
 alias for fminbnd




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fmins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1422
 -- Function File: [X] = fmins( F,X0,OPTIONS,GRAD,P1,P2, ...)

     Find the minimum of a funtion of several variables.  By default the
     method used is the Nelder&Mead Simplex algorithm

     Example usage: fmins(inline('(x(1)-5).^2+(x(2)-8).^4'),[0;0])

     *Inputs*
     F
          A string containing the name of the function to minimize
     X0
          A vector of initial parameters fo the function F.
     OPTIONS
          Vector with control parameters (not all parameters are used)
          options(1) - Show progress (if 1, default is 0, no progress)
          options(2) - Relative size of simplex (default 1e-3)
          options(6) - Optimization algorithm
             if options(6)==0 - Nelder & Mead simplex (default)
             if options(6)==1 - Multidirectional search Method
             if options(6)==2 - Alternating Directions search
          options(5)
             if options(6)==0 && options(5)==0 - regular simplex
             if options(6)==0 && options(5)==1 - right-angled simplex
                Comment: the default is set to "right-angled simplex".
                  this works better for me on a broad range of problems,
                  although the default in nmsmax is "regular simplex"
          options(10) - Maximum number of function evaluations
     GRAD
          Unused (For compatibility with Matlab)
     P1,P2, ...
          Optional parameters for function F




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Find the minimum of a funtion of several variables.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gjp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
 m = gjp (m, k[, l])

 m: matrix; k, l: row- and column-index of pivot, l defaults to k.

 Gauss-Jordon pivot as defined in Bard, Y.: Nonlinear Parameter
 Estimation, p. 296, Academic Press, New York and London 1974. In
 the pivot column, this seems not quite the same as the usual
 Gauss-Jordan(-Clasen) pivot. Bard gives Beaton, A. E., 'The use of
 special matrix operators in statistical calculus' Research Bulletin
 RB-64-51 (1964), Educational Testing Service, Princeton, New Jersey
 as a reference, but this article is not easily accessible. Another
 reference, whose definition of gjp differs from Bards by some
 signs, is Clarke, R. B., 'Algorithm AS 178: The Gauss-Jordan sweep
 operator with detection of collinearity', Journal of the Royal
 Statistical Society, Series C (Applied Statistics) (1982), 31(2),
 166--168.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
 m = gjp (m, k[, l])



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
jacobs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1031
 -- Function File: Df = jacobs (X, F)
 -- Function File: Df = jacobs (X, F, HOOK)
     Calculate the jacobian of a function using the complex step method.

     Let F be a user-supplied function.  Given a point X at which we
     seek for the Jacobian, the function 'jacobs' returns the Jacobian
     matrix 'd(f(1), ..., df(end))/d(x(1), ..., x(n))'.  The function
     uses the complex step method and thus can be applied to real
     analytic functions.

     The optional argument HOOK is a structure with additional options.
     HOOK can have the following fields:
        * 'h' - can be used to define the magnitude of the complex step
          and defaults to 1e-20; steps larger than 1e-3 are not allowed.
        * 'fixed' - is a logical vector internally usable by some
          optimization functions; it indicates for which elements of X
          no gradient should be computed, but zero should be returned.

     For example:

          f = @(x) [x(1)^2 + x(2); x(2)*exp(x(1))];
          Df = jacobs ([1, 2], f)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Calculate the jacobian of a function using the complex step method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
leasqr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7546
function [f,p,cvg,iter,corp,covp,covr,stdresid,Z,r2]=
                   leasqr(x,y,pin,F,{stol,niter,wt,dp,dFdp,options})

 Levenberg-Marquardt nonlinear regression of f(x,p) to y(x).

 Version 3.beta
 Optional parameters are in braces {}.
 x = vector or matrix of independent variables.
 y = vector or matrix of observed values.
 wt = statistical weights (same dimensions as y).  These should be
   set to be proportional to (sqrt of var(y))^-1; (That is, the
   covariance matrix of the data is assumed to be proportional to
   diagonal with diagonal equal to (wt.^2)^-1.  The constant of
   proportionality will be estimated.); default = ones( size (y)).
 pin = vec of initial parameters to be adjusted by leasqr.
 dp = fractional increment of p for numerical partial derivatives;
   default = .001*ones(size(pin))
   dp(j) > 0 means central differences on j-th parameter p(j).
   dp(j) < 0 means one-sided differences on j-th parameter p(j).
   dp(j) = 0 holds p(j) fixed i.e. leasqr wont change initial guess: pin(j)
 F = name of function in quotes or function handle; the function
   shall be of the form y=f(x,p), with y, x, p of the form y, x, pin
   as described above.
 dFdp = name of partial derivative function in quotes or function
 handle; default is 'dfdp', a slow but general partial derivatives
 function; the function shall be of the form
 prt=dfdp(x,f,p,dp,F[,bounds]). For backwards compatibility, the
 function will only be called with an extra 'bounds' argument if the
 'bounds' option is explicitely specified to leasqr (see dfdp.m).
 stol = scalar tolerance on fractional improvement in scalar sum of
   squares = sum((wt.*(y-f))^2); default stol = .0001;
 niter = scalar maximum number of iterations; default = 20;
 options = structure, currently recognized fields are 'fract_prec',
 'max_fract_change', 'inequc', 'bounds', and 'equc'. For backwards
 compatibility, 'options' can also be a matrix whose first and
 second column contains the values of 'fract_prec' and
 'max_fract_change', respectively.
   Field 'options.fract_prec': column vector (same length as 'pin')
   of desired fractional precisions in parameter estimates.
   Iterations are terminated if change in parameter vector (chg)
   relative to current parameter estimate is less than their
   corresponding elements in 'options.fract_prec' [ie. all (abs
   (chg) < abs (options.fract_prec .* current_parm_est))] on two
   consecutive iterations, default = zeros().
   Field 'options.max_fract_change': column vector (same length as
   'pin) of maximum fractional step changes in parameter vector.
   Fractional change in elements of parameter vector is constrained to
   be at most 'options.max_fract_change' between sucessive iterations.
   [ie. abs(chg(i))=abs(min([chg(i)
   options.max_fract_change(i)*current param estimate])).], default =
   Inf*ones().
   Field 'options.inequc': cell-array containing up to four entries,
   two entries for linear inequality constraints and/or one or two
   entries for general inequality constraints. Initial parameters
   must satisfy these constraints. Either linear or general
   constraints may be the first entries, but the two entries for
   linear constraints must be adjacent and, if two entries are given
   for general constraints, they also must be adjacent. The two
   entries for linear constraints are a matrix (say m) and a vector
   (say v), specifying linear inequality constraints of the form
   `m.' * parameters + v >= 0'. If the constraints are just bounds,
   it is suggested to specify them in 'options.bounds' instead,
   since then some sanity tests are performed, and since the
   function 'dfdp.m' is guarantied not to violate constraints during
   determination of the numeric gradient only for those constraints
   specified as 'bounds' (possibly with violations due to a certain
   inaccuracy, however, except if no constraints except bounds are
   specified). The first entry for general constraints must be a
   differentiable vector valued function (say h), specifying general
   inequality constraints of the form `h (p[, idx]) >= 0'; p is the
   column vector of optimized paraters and the optional argument idx
   is a logical index. h has to return the values of all constraints
   if idx is not given, and has to return only the indexed
   constraints if idx is given (so computation of the other
   constraints can be spared). If a second entry for general
   constraints is given, it must be a function (say dh) which
   returnes a matrix whos rows contain the gradients of the
   constraint function h with respect to the optimized parameters.
   It has the form jac_h = dh (vh, p, dp, h, idx[, bounds]); p is
   the column vector of optimized parameters, and idx is a logical
   index --- only the rows indexed by idx must be returned (so
   computation of the others can be spared). The other arguments of
   dh are for the case that dh computes numerical gradients: vh is
   the column vector of the current values of the constraint
   function h, with idx already applied. h is a function h (p) to
   compute the values of the constraints for parameters p, it will
   return only the values indexed by idx. dp is a suggestion for
   relative step width, having the same value as the argument 'dp'
   of leasqr above. If bounds were specified to leasqr, they are
   provided in the argument bounds of dh, to enable their
   consideration in determination of numerical gradients. If dh is
   not specified to leasqr, numerical gradients are computed in the
   same way as with 'dfdp.m' (see above). If some constraints are
   linear, they should be specified as linear constraints (or
   bounds, if applicable) for reasons of performance, even if
   general constraints are also specified.
   Field 'options.bounds': two-column-matrix, one row for each
   parameter in 'pin'. Each row contains a minimal and maximal value
   for each parameter. Default: [-Inf, Inf] in each row. If this
   field is used with an existing user-side function for 'dFdp'
   (see above) the functions interface might have to be changed.
   Field 'options.equc': equality constraints, specified the same
   way as inequality constraints (see field 'options.inequc').
   Initial parameters must satisfy these constraints.
   Note that there is possibly a certain inaccuracy in honoring
   constraints, except if only bounds are specified. 
   _Warning_: If constraints (or bounds) are set, returned guesses
   of corp, covp, and Z are generally invalid, even if no constraints
   are active for the final parameters. If equality constraints are
   specified, corp, covp, and Z are not guessed at all.
   Field 'options.cpiv': Function for complementary pivot algorithm
   for inequality constraints, default: cpiv_bard. No different
   function is supplied.

          OUTPUT VARIABLES
 f = column vector of values computed: f = F(x,p).
 p = column vector trial or final parameters. i.e, the solution.
 cvg = scalar: = 1 if convergence, = 0 otherwise.
 iter = scalar number of iterations used.
 corp = correlation matrix for parameters.
 covp = covariance matrix of the parameters.
 covr = diag(covariance matrix of the residuals).
 stdresid = standardized residuals.
 Z = matrix that defines confidence region (see comments in the source).
 r2 = coefficient of multiple determination, intercept form.

 Not suitable for non-real residuals.

 References:
 Bard, Nonlinear Parameter Estimation, Academic Press, 1974.
 Draper and Smith, Applied Regression Analysis, John Wiley and Sons, 1981.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
function [f,p,cvg,iter,corp,covp,covr,stdresid,Z,r2]=
                   leasqr(



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
line_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
 [a,fx,nev] = line_min (f, dx, args, narg, h, nev_max) - Minimize f() along dx

 INPUT ----------
 f    : string  : Name of minimized function
 dx   : matrix  : Direction along which f() is minimized
 args : cell    : Arguments of f
 narg : integer : Position of minimized variable in args.  Default=1
 h    : scalar  : Step size to use for centered finite difference
 approximation of first and second derivatives. Default=1E-3.
 nev_max : integer : Maximum number of function evaluations.  Default=30

 OUTPUT ---------
 a    : scalar  : Value for which f(x+a*dx) is a minimum (*)
 fx   : scalar  : Value of f(x+a*dx) at minimum (*)
 nev  : integer : Number of function evaluations

 (*) The notation f(x+a*dx) assumes that args == {x}.

 Reference: David G Luenberger's Linear and Nonlinear Programming



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 [a,fx,nev] = line_min (f, dx, args, narg, h, nev_max) - Minimize f() along dx



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
linprog


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 591
 -- Function File: X = linprog (F, A, B)
 -- Function File: X = linprog (F, A, B, AEQ, BEQ)
 -- Function File: X = linprog (F, A, B, AEQ, BEQ, LB, UB)
 -- Function File: [X, FVAL] = linprog (...)
     Solve a linear problem.

     Finds

          min (f' * x)

     (both f and x are column vectors) subject to

          A   * x <= b
          Aeq * x  = beq
          lb <= x <= ub

     If not specified, AEQ and BEQ default to empty matrices.

     If not specified, the lower bound LB defaults to minus infinite and
     the upper bound UB defaults to infinite.

     See also: glpk.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Solve a linear problem.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mdsmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2358
MDSMAX  Multidirectional search method for direct search optimization.
        [x, fmax, nf] = MDSMAX(FUN, x0, STOPIT, SAVIT) attempts to
        maximize the function FUN, using the starting vector x0.
        The method of multidirectional search is used.
        Output arguments:
               x    = vector yielding largest function value found,
               fmax = function value at x,
               nf   = number of function evaluations.
        The iteration is terminated when either
               - the relative size of the simplex is <= STOPIT(1)
                 (default 1e-3),
               - STOPIT(2) function evaluations have been performed
                 (default inf, i.e., no limit), or
               - a function value equals or exceeds STOPIT(3)
                 (default inf, i.e., no test on function values).
        The form of the initial simplex is determined by STOPIT(4):
          STOPIT(4) = 0: regular simplex (sides of equal length, the default),
          STOPIT(4) = 1: right-angled simplex.
        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
        If a non-empty fourth parameter string SAVIT is present, then
        `SAVE SAVIT x fmax nf' is executed after each inner iteration.
        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
            and in function calls, x has the same shape as x0.
        MDSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
        arguments to be passed to fun, via feval(fun,x,P1,P2,...).

 This implementation uses 2n^2 elements of storage (two simplices), where x0
 is an n-vector.  It is based on the algorithm statement in [2, sec.3],
 modified so as to halve the storage (with a slight loss in readability).

 References:
 [1] V. J. Torczon, Multi-directional search: A direct search algorithm for
     parallel machines, Ph.D. Thesis, Rice University, Houston, Texas, 1989.
 [2] V. J. Torczon, On the convergence of the multidirectional search
     algorithm, SIAM J. Optimization, 1 (1991), pp. 123-145.
 [3] N. J. Higham, Optimization by direct search in matrix computations,
     SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
 [4] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
        Second edition, Society for Industrial and Applied Mathematics,
        Philadelphia, PA, 2002; sec. 20.5.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
MDSMAX  Multidirectional search method for direct search optimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
minimize


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4103
 [x,v,nev,...] = minimize (f,args,...) - Minimize f

 ARGUMENTS
 f    : string  : Name of function. Must return a real value
 args : list or : List of arguments to f (by default, minimize the first)
        matrix  : f's only argument

 RETURNED VALUES
 x   : matrix  : Local minimum of f. Let's suppose x is M-by-N.
 v   : real    : Value of f in x0
 nev : integer : Number of function evaluations 
     or 1 x 2  : Number of function and derivative evaluations (if
                 derivatives are used)
 

 Extra arguments are either a succession of option-value pairs or a single
 list or struct of option-value pairs (for unary options, the value in the
 struct is ignored).
 
 OPTIONS : DERIVATIVES   Derivatives may be used if one of these options
 ---------------------   uesd. Otherwise, the Nelder-Mean (see
                         nelder_mead_min) method is used.
 
 'd2f', d2f     : Name of a function that returns the value of f, of its
                  1st and 2nd derivatives : [fx,dfx,d2fx] = feval (d2f, x)
                  where fx is a real number, dfx is 1x(M*N) and d2fx is
                  (M*N)x(M*N). A Newton-like method (d2_min) will be used.

 'hess'         : Use [fx,dfx,d2fx] = leval (f, args) to compute 1st and
                  2nd derivatives, and use a Newton-like method (d2_min).

 'd2i', d2i     : Name of a function that returns the value of f, of its
                  1st and pseudo-inverse of second derivatives : 
                  [fx,dfx,id2fx] = feval (d2i, x) where fx is a real
                  number, dfx is 1x(M*N) and d2ix is (M*N)x(M*N).
                  A Newton-like method will be used (see d2_min).

 'ihess'        : Use [fx,dfx,id2fx] = leval (f, args) to compute 1st
                  derivative and the pseudo-inverse of 2nd derivatives,
                  and use a Newton-like method (d2_min).

            NOTE : df, d2f or d2i take the same arguments as f.
 
 'order', n     : Use derivatives of order n. If the n'th order derivative
                  is not specified by 'df', 'd2f' or 'd2i', it will be
                  computed numerically. Currently, only order 1 works.
 
 'ndiff'        : Use a variable metric method (bfgs) using numerical
                  differentiation.

 OPTIONS : STOPPING CRITERIA  Default is to use 'tol'
 ---------------------------
 'ftol', ftol   : Stop search when value doesn't improve, as tested by

              ftol > Deltaf/max(|f(x)|,1)

                 where Deltaf is the decrease in f observed in the last
                 iteration.                                 Default=10*eps

 'utol', utol   : Stop search when updates are small, as tested by

              tol > max { dx(i)/max(|x(i)|,1) | i in 1..N }

                 where  dx is the change in the x that occured in the last
                 iteration.

 'dtol',dtol    : Stop search when derivatives are small, as tested by

              dtol > max { df(i)*max(|x(i)|,1)/max(v,1) | i in 1..N }

                 where x is the current minimum, v is func(x) and df is
                 the derivative of f in x. This option is ignored if
                 derivatives are not used in optimization.

 MISC. OPTIONS
 -------------
 'maxev', m     : Maximum number of function evaluations             <inf>

 'narg' , narg  : Position of the minimized argument in args           <1>
 'isz'  , step  : Initial step size (only for 0 and 1st order method)  <1>
                  Should correspond to expected distance to minimum
 'verbose'      : Display messages during execution

 'backend'      : Instead of performing the minimization itself, return
                  [backend, control], the name and control argument of the
                  backend used by minimize(). Minimimzation can then be
                  obtained without the overhead of minimize by calling, if
                  a 0 or 1st order method is used :

              [x,v,nev] = feval (backend, args, control)
                   
                  or, if a 2nd order method is used :

              [x,v,nev] = feval (backend, control.d2f, args, control)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
 [x,v,nev,...] = minimize (f,args,...) - Minimize f



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
nelder_mead_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2747
 [x0,v,nev] = nelder_mead_min (f,args,ctl) - Nelder-Mead minimization

 Minimize 'f' using the Nelder-Mead algorithm. This function is inspired
 from the that found in the book "Numerical Recipes".

 ARGUMENTS
 ---------
 f     : string : Name of function. Must return a real value
 args  : list   : Arguments passed to f.
      or matrix : f's only argument
 ctl   : vector : (Optional) Control variables, described below
      or struct

 RETURNED VALUES
 ---------------
 x0  : matrix   : Local minimum of f
 v   : real     : Value of f in x0
 nev : number   : Number of function evaluations
 
 CONTROL VARIABLE : (optional) may be named arguments (i.e. "name",value
 ------------------ pairs), a struct, or a vector of length <= 6, where
                    NaN's are ignored. Default values are written <value>.
  OPT.   VECTOR
  NAME    POS
 ftol,f  N/A    : Stopping criterion : stop search when values at simplex
                  vertices are all alike, as tested by 

                   f > (max_i (f_i) - min_i (f_i)) /max(max(|f_i|),1)

                  where f_i are the values of f at the vertices.  <10*eps>

 rtol,r  N/A    : Stop search when biggest radius of simplex, using
                  infinity-norm, is small, as tested by :

              ctl(2) > Radius                                     <10*eps>

 vtol,v  N/A    : Stop search when volume of simplex is small, tested by
            
              ctl(2) > Vol

 crit,c ctl(1)  : Set one stopping criterion, 'ftol' (c=1), 'rtol' (c=2)
                  or 'vtol' (c=3) to the value of the 'tol' option.    <1>

 tol, t ctl(2)  : Threshold in termination test chosen by 'crit'  <10*eps>

 narg  ctl(3)  : Position of the minimized argument in args            <1>
 maxev ctl(4)  : Maximum number of function evaluations. This number <inf>
                 may be slightly exceeded.
 isz   ctl(5)  : Size of initial simplex, which is :                   <1>

                { x + e_i | i in 0..N } 
 
                Where x == args{narg} is the initial value 
                 e_0    == zeros (size (x)), 
                 e_i(j) == 0 if j != i and e_i(i) == ctl(5)
                 e_i    has same size as x

                Set ctl(5) to the distance you expect between the starting
                point and the minimum.

 rst   ctl(6)   : When a minimum is found the algorithm restarts next to
                  it until the minimum does not improve anymore. ctl(6) is
                  the maximum number of restarts. Set ctl(6) to zero if
                  you know the function is well-behaved or if you don't
                  mind not getting a true minimum.                     <0>

 verbose, v     Be more or less verbose (quiet=0)                      <0>



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 [x0,v,nev] = nelder_mead_min (f,args,ctl) - Nelder-Mead minimization



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nmsmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1967
NMSMAX  Nelder-Mead simplex method for direct search optimization.
        [x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to
        maximize the function FUN, using the starting vector x0.
        The Nelder-Mead direct search method is used.
        Output arguments:
               x    = vector yielding largest function value found,
               fmax = function value at x,
               nf   = number of function evaluations.
        The iteration is terminated when either
               - the relative size of the simplex is <= STOPIT(1)
                 (default 1e-3),
               - STOPIT(2) function evaluations have been performed
                 (default inf, i.e., no limit), or
               - a function value equals or exceeds STOPIT(3)
                 (default inf, i.e., no test on function values).
        The form of the initial simplex is determined by STOPIT(4):
           STOPIT(4) = 0: regular simplex (sides of equal length, the default)
           STOPIT(4) = 1: right-angled simplex.
        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
           STOPIT(6) indicates the direction (ie. minimization or 
                   maximization.) Default is 1, maximization.
                   set STOPIT(6)=-1 for minimization
        If a non-empty fourth parameter string SAVIT is present, then
        `SAVE SAVIT x fmax nf' is executed after each inner iteration.
        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
            and in function calls, x has the same shape as x0.
        NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
        arguments to be passed to fun, via feval(fun,x,P1,P2,...).
 References:
 N. J. Higham, Optimization by direct search in matrix computations,
    SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
 C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
    and Applied Mathematics, Philadelphia, PA, 1999.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
NMSMAX  Nelder-Mead simplex method for direct search optimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
nonlin_curvefit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1011
 -- Function File: [P, FY, CVG, OUTP] = nonlin_curvefit (F, PIN, X, Y)
 -- Function File: [P, FY, CVG, OUTP] = nonlin_curvefit (F, PIN, X, Y,
          SETTINGS)
     Frontend for nonlinear fitting of values, computed by a model
     function, to observed values.

     Please refer to the description of 'nonlin_residmin'.  The only
     differences to 'nonlin_residmin' are the additional arguments X
     (independent values, mostly, but not necessarily, an array of the
     same dimensions or the same number of rows as Y) and Y (array of
     observations), the returned value FY (final guess for observed
     values) instead of RESID, that the model function has a second
     obligatory argument which will be set to X and is supposed to
     return guesses for the observations (with the same dimensions), and
     that the possibly user-supplied function for the jacobian of the
     model function has also a second obligatory argument which will be
     set to X.

     See also: nonlin_residmin.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Frontend for nonlinear fitting of values, computed by a model function,
to obser



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nonlin_min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15751
 -- Function File: [P, OBJF, CVG, OUTP] = nonlin_min (F, PIN)
 -- Function File: [P, OBJF, CVG, OUTP] = nonlin_min (F, PIN, SETTINGS)

     Frontend for constrained nonlinear minimization of a scalar
     objective function.  The functions supplied by the user have a
     minimal interface; any additionally needed constants can be
     supplied by wrapping the user functions into anonymous functions.

     The following description applies to usage with vector-based
     parameter handling.  Differences in usage for structure-based
     parameter handling will be explained in a separate section below.

     F: objective function.  It gets a column vector of real parameters
     as argument.  In gradient determination, this function may be
     called with an informational second argument, whose content depends
     on the function for gradient determination.

     PIN: real column vector of initial parameters.

     SETTINGS: structure whose fields stand for optional settings
     referred to below.  The fields can be set by 'optimset()' with
     Octave versions 3.3.55 or greater; with older Octave versions, the
     fields must be set directly as structure-fields in the correct
     case.

     The returned values are the column vector of final parameters P,
     the final value of the objective function OBJF, an integer CVG
     indicating if and how optimization succeeded or failed, and a
     structure OUTP with additional information, curently with only one
     field: NITER, the number of iterations.  CVG is greater than zero
     for success and less than or equal to zero for failure; its
     possible values depend on the used backend and currently can be '0'
     (maximum number of iterations exceeded), '1' (fixed number of
     iterations completed, e.g.  in stochastic optimizers), '2'
     (parameter change less than specified precision in two consecutive
     iterations), '3' (improvement in objective function less than
     specified), or '-4' (algorithm got stuck).

     SETTINGS:

     'Algorithm': String specifying the backend.  Currently available
     are '"lm_feasible"' (default) and '"siman"'.  They are described in
     separate sections below.

     'objf_grad': Function computing the gradient of the objective
     function with respect to the parameters.  Will be called with the
     column vector of parameters and an informational structure as
     arguments.  The structure has the fields 'f': value of objective
     function for current parameters, 'fixed': logical vector indicating
     which parameters are not optimized, so these partial derivatives
     need not be computed and can be set to zero, 'diffp',
     'diff_onesided', 'lbound', 'ubound': identical to the user settings
     of this name, 'plabels': 1-dimensional cell-array of
     column-cell-arrays, each column with labels for all parameters, the
     first column contains the numerical indices of the parameters.  The
     default gradient function will call the objective function with the
     second argument set with fields 'f': as the 'f' passed to the
     gradient function, 'plabels': cell-array of 1x1 cell-arrays with
     the entries of the column-cell-arrays of 'plabels' as passed to the
     jacobian function corresponding to current parameter, 'side': '0'
     for one-sided interval, '1' or '2', respectively, for the sides of
     a two-sided interval, and 'parallel': logical scalar indicating
     parallel computation of partial derivatives.

     'objf_hessian': Function computing the Hessian of the objective
     function with respect to the parameters.  The default is backend
     specific.  Will be called with the column vector of parameters as
     argument.

     'diffp': column vector of fractional intervals (doubled for central
     intervals) supposed to be used by gradient functions performing
     finite differencing.  Default: '.001 * ones (size (parameters))'.
     The default gradient function will use these as absolute intervals
     for parameters with value zero.

     'diff_onesided': logical column vector indicating that one-sided
     intervals should be used by gradient functions performing finite
     differencing.  Default: 'false (size (parameters))'.

     'complex_step_derivative_objf', 'complex_step_derivative_inequc',
     'complex_step_derivative_equc': logical scalars, default: false.
     Estimate gradient of objective function, general inequality
     constraints, and general equality constraints, respectively, with
     complex step derivative approximation.  Use only if you know that
     your objective function, function of general inequality
     constraints, or function of general equality constraints,
     respectively, is suitable for this.  No user function for the
     respective gradient must be specified.

     'cstep': scalar step size for complex step derivative
     approximation.  Default: 1e-20.

     'parallel_local': logical scalar, default: false.  Estimate
     gradient of objective function and of constraints in parallel
     processes.  Works for default finite difference gradient function
     and for complex step derivatives.  Due to overhead, a speed
     advantage can only be expected if objective function or constraint
     functions are time consuming enough.

     'fixed': logical column vector indicating which parameters should
     not be optimized, but kept to their inital value.  Fixing is done
     independently of the backend, but the backend may choose to fix
     additional parameters under certain conditions.

     'lbound', 'ubound': column vectors of lower and upper bounds for
     parameters.  Default: '-Inf' and '+Inf', respectively.  The bounds
     are non-strict, i.e.  parameters are allowed to be exactly equal to
     a bound.  The default gradient function will respect bounds (but no
     further inequality constraints) in finite differencing.

     'inequc': Further inequality constraints.  Cell-array containing up
     to four entries, two entries for linear inequality constraints
     and/or one or two entries for general inequality constraints.
     Either linear or general constraints may be the first entries, but
     the two entries for linear constraints must be adjacent and, if two
     entries are given for general constraints, they also must be
     adjacent.  The two entries for linear constraints are a matrix (say
     'm') and a vector (say 'v'), specifying linear inequality
     constraints of the form 'm.' * parameters + v >= 0'.  The first
     entry for general constraints must be a differentiable
     column-vector valued function (say 'h'), specifying general
     inequality constraints of the form 'h (p[, idx]) >= 0'; 'p' is the
     column vector of optimized parameters and the optional argument
     'idx' is a logical index.  'h' has to return the values of all
     constraints if 'idx' is not given.  It may choose to return only
     the indexed constraints if 'idx' is given (so computation of the
     other constraints can be spared); in this case, the additional
     setting 'f_inequc_idx' has to be set to 'true'.  In gradient
     determination, this function may be called with an informational
     third argument, whose content depends on the function for gradient
     determination.  If a second entry for general inequality
     constraints is given, it must be a function computing the jacobian
     of the constraints with respect to the parameters.  For this
     function, the description of 'dfdp' above applies, with 2
     exceptions: 1) it is called with 3 arguments since it has an
     additional argument 'idx', a logical index, at second position,
     indicating which rows of the jacobian must be returned (if the
     function chooses to return only indexed rows, the additional
     setting 'df_inequc_idx' has to be set to 'true').  2) the default
     jacobian function calls 'h' with 3 arguments, since the argument
     'idx' is also supplied.  Note that specifying linear constraints as
     general constraints will generally waste performance, even if
     further, non-linear, general constraints are also specified.

     'equc': Equality constraints.  Specified the same way as inequality
     constraints (see 'inequc').  The respective additional settings are
     named 'f_equc_idx' and 'df_equc_idx'.

     'cpiv': Function for complementary pivoting, usable in algorithms
     for constraints.  Default:  cpiv_bard.  Only the default function
     is supplied with the package.

     'TolFun': Minimum fractional improvement in objective function in
     an iteration (termination criterium).  Default: .0001.

     'MaxIter': Maximum number of iterations (termination criterium).
     Default: backend-specific.

     'fract_prec': Column Vector, minimum fractional change of
     parameters in an iteration (termination criterium if violated in
     two consecutive iterations).  Default: backend-specific.

     'max_fract_change': Column Vector, enforced maximum fractional
     change in parameters in an iteration.  Default: backend-specific.

     'Display': String indicating the degree of verbosity.  Default:
     '"off"'.  Possible values are currently '"off"' (no messages) and
     '"iter"' (some messages after each iteration).  Support of this
     setting and its exact interpretation are backend-specific.

     'debug': Logical scalar, default: 'false'.  Will be passed to the
     backend, which might print debugging information if true.

     Structure-based parameter handling

     The setting 'param_order' is a cell-array with names of the
     optimized parameters.  If not given, and initial parameters are a
     structure, all parameters in the structure are optimized.  If
     initial parameters are a structure, it is an error if 'param_order'
     is not given and there are any non-structure-based configuration
     items or functions.

     The initial parameters PIN can be given as a structure containing
     at least all fields named in 'param_order'.  In this case the
     returned parameters P will also be a structure.

     Each user-supplied function can be called with the argument
     containing the current parameters being a structure instead of a
     column vector.  For this, a corresponding setting must be set to
     'true': 'objf_pstruct' (objective function), 'grad_objf_pstruct'
     (gradient of objective function), 'hessian_objf_pstruct' (hessian
     of objective function), 'f_inequc_pstruct' (general inequality
     constraints), 'df_inequc_pstruct' (jacobian of general inequality
     constraints), 'f_equc_pstruct' (general equality constraints), and
     'df_equc_pstruct' (jacobian of general equality constraints).  If a
     gradient (jacobian) function is configured in such a way, it must
     return the entries (columns) of the gradient (jacobian) as fields
     of a structure under the respective parameter names.  If the
     hessian function is configured in such a way, it must return a
     structure (say 'h') with fields e.g.  as 'h.a.b = value' for
     'value' being the 2nd partial derivative with respect to 'a' and
     'b'.  There is no need to also specify the field 'h.b.a' in this
     example.

     Similarly, for specifying linear constraints, instead of the matrix
     (called 'm' above), a structure containing the rows of the matrix
     in fields under the respective parameter names can be given.  In
     this case, rows containing only zeros need not be given.

     The vector-based settings 'lbound', 'ubound', 'fixed', 'diffp',
     'diff_onesided', 'fract_prec', and 'max_fract_change' can be
     replaced by the setting 'param_config'.  It is a structure that can
     contain fields named in 'param_order'.  For each such field, there
     may be subfields with the same names as the above vector-based
     settings, but containing a scalar value for the respective
     parameter.  If 'param_config' is specified, none of the above
     vector/matrix-based settings may be used.

     Additionally, named parameters are allowed to be non-scalar real
     arrays.  In this case, their dimensions are given by the setting
     'param_dims', a cell-array of dimension vectors, each containing at
     least two dimensions; if not given, dimensions are taken from the
     initial parameters, if these are given in a structure.  Any
     vector-based settings or not structure-based linear constraints
     then must correspond to an order of parameters with all parameters
     reshaped to vectors and concatenated in the user-given order of
     parameter names.  Structure-based settings or structure-based
     initial parameters must contain arrays with dimensions reshapable
     to those of the respective parameters.

     Description of backends

     "lm_feasible"

     A Levenberg/Marquardt-like optimizer, attempting to honour
     constraints throughout the course of optimization.  This means that
     the initial parameters must not violate constraints (to find an
     initial feasible set of parameters, e.g.  Octaves 'sqp' can be
     used, by specifying an objective function which is constant or
     which returns the quadratic distance to the initial values).  If
     the constraints need only be honoured in the result of the
     optimization, Octaves 'sqp' may be preferable.  The Hessian is
     either supplied by the user or is approximated by the BFGS
     algorithm.

     Returned value CVG will be '2' or '3' for success and '0' or '-4'
     for failure (see above for meaning).

     Backend-specific defaults are: 'MaxIter': 20, 'fract_prec': 'zeros
     (size (parameters))', 'max_fract_change': 'Inf' for all parameters.

     Interpretation of 'Display': if set to '"iter"', currently only
     information on applying 'max_fract_change' is printed.

     "siman"

     A simulated annealing (stochastic) optimizer, changing all
     parameters at once in a single step, so being suitable for
     non-bound constraints.

     No gradient or hessian of the objective function is used.  The
     settings 'MaxIter', 'fract_prec', 'TolFun', and 'max_fract_change'
     are not honoured.

     Accepts the additional settings 'T_init' (initial temperature,
     default 0.01), 'T_min' (final temperature, default 1.0e-5), 'mu_T'
     (factor of temperature decrease, default 1.005), 'iters_fixed_T'
     (iterations within one temperature step, default 10),
     'max_rand_step' (column vector or structure-based configuration of
     maximum random steps for each parameter, default 0.005 * PIN),
     'stoch_regain_constr' (if 'true', regain constraints after a random
     step, otherwise take new random value until constraints are met,
     default false), 'trace_steps' (set field 'trace' of OUTP with a
     matrix with a row for each step, first column iteration number,
     second column repeat number within iteration, third column value of
     objective function, rest columns parameter values, default false),
     and 'siman_log' (set field 'log' of OUTP with a matrix with a row
     for each iteration, first column temperature, second column value
     of objective function, rest columns numbers of tries with decrease,
     no decrease but accepted, and no decrease and rejected.

     Steps with increase 'diff' of objective function are accepted if
     'rand (1) < exp (- diff / T)', where 'T' is the temperature of the
     current iteration.

     If regaining of constraints failed, optimization will be aborted
     and returned value of CVG will be '0'.  Otherwise, CVG will be '1'.

     Interpretation of 'Display': if set to '"iter"', an informational
     line is printed after each iteration.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Frontend for constrained nonlinear minimization of a scalar objective
function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
nonlin_residmin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13420
 -- Function File: [P, RESID, CVG, OUTP] = nonlin_residmin (F, PIN)
 -- Function File: [P, RESID, CVG, OUTP] = nonlin_residmin (F, PIN,
          SETTINGS)
     Frontend for nonlinear minimization of residuals returned by a
     model function.

     The functions supplied by the user have a minimal interface; any
     additionally needed constants (e.g.  observed values) can be
     supplied by wrapping the user functions into anonymous functions.

     The following description applies to usage with vector-based
     parameter handling.  Differences in usage for structure-based
     parameter handling will be explained in a separate section below.

     F: function returning the array of residuals.  It gets a column
     vector of real parameters as argument.  In gradient determination,
     this function may be called with an informational second argument,
     whose content depends on the function for gradient determination.

     PIN: real column vector of initial parameters.

     SETTINGS: structure whose fields stand for optional settings
     referred to below.  The fields can be set by 'optimset()' with
     Octave versions 3.3.55 or greater; with older Octave versions, the
     fields must be set directly as structure-fields in the correct
     case.

     The returned values are the column vector of final parameters P,
     the final array of residuals RESID, an integer CVG indicating if
     and how optimization succeeded or failed, and a structure OUTP with
     additional information, curently with only one field: NITER, the
     number of iterations.  CVG is greater than zero for success and
     less than or equal to zero for failure; its possible values depend
     on the used backend and currently can be '0' (maximum number of
     iterations exceeded), '2' (parameter change less than specified
     precision in two consecutive iterations), or '3' (improvement in
     objective function - e.g.  sum of squares - less than specified).

     SETTINGS:

     'Algorithm': String specifying the backend.  Default:
     '"lm_svd_feasible"'.  The latter is currently the only backend
     distributed with this package.  It is described in a separate
     section below.

     'dfdp': Function computing the jacobian of the residuals with
     respect to the parameters, assuming residuals are reshaped to a
     vector.  Default: finite differences.  Will be called with the
     column vector of parameters and an informational structure as
     arguments.  The structure has the fields 'f': value of residuals
     for current parameters, reshaped to a column vector, 'fixed':
     logical vector indicating which parameters are not optimized, so
     these partial derivatives need not be computed and can be set to
     zero, 'diffp', 'diff_onesided', 'lbound', 'ubound': identical to
     the user settings of this name, 'plabels': 1-dimensional cell-array
     of column-cell-arrays, each column with labels for all parameters,
     the first column contains the numerical indices of the parameters.
     The default jacobian function will call the model function with the
     second argument set with fields 'f': as the 'f' passed to the
     jacobian function, 'plabels': cell-array of 1x1 cell-arrays with
     the entries of the column-cell-arrays of 'plabels' as passed to the
     jacobian function corresponding to current parameter, 'side': '0'
     for one-sided interval, '1' or '2', respectively, for the sides of
     a two-sided interval, and 'parallel': logical scalar indicating
     parallel computation of partial derivatives.

     'diffp': column vector of fractional intervals (doubled for central
     intervals) supposed to be used by jacobian functions performing
     finite differencing.  Default: '.001 * ones (size (parameters))'.
     The default jacobian function will use these as absolute intervals
     for parameters with value zero.

     'diff_onesided': logical column vector indicating that one-sided
     intervals should be used by jacobian functions performing finite
     differencing.  Default: 'false (size (parameters))'.

     'complex_step_derivative_f', 'complex_step_derivative_inequc',
     'complex_step_derivative_equc': logical scalars, default: false.
     Estimate Jacobian of model function, general inequality
     constraints, and general equality constraints, respectively, with
     complex step derivative approximation.  Use only if you know that
     your model function, function of general inequality constraints, or
     function of general equality constraints, respectively, is suitable
     for this.  No user function for the respective Jacobian must be
     specified.

     'cstep': scalar step size for complex step derivative
     approximation.  Default: 1e-20.

     'parallel_local': logical scalar, default: false.  Estimate
     Jacobians of model function and of constraints in parallel
     processes.  Works for default finite difference Jacobian function
     and for complex step derivatives.  Due to overhead, a speed
     advantage can only be expected if model function or constraint
     functions are time consuming enough.

     'fixed': logical column vector indicating which parameters should
     not be optimized, but kept to their inital value.  Fixing is done
     independently of the backend, but the backend may choose to fix
     additional parameters under certain conditions.

     'lbound', 'ubound': column vectors of lower and upper bounds for
     parameters.  Default: '-Inf' and '+Inf', respectively.  The bounds
     are non-strict, i.e.  parameters are allowed to be exactly equal to
     a bound.  The default jacobian function will respect bounds (but no
     further inequality constraints) in finite differencing.

     'inequc': Further inequality constraints.  Cell-array containing up
     to four entries, two entries for linear inequality constraints
     and/or one or two entries for general inequality constraints.
     Either linear or general constraints may be the first entries, but
     the two entries for linear constraints must be adjacent and, if two
     entries are given for general constraints, they also must be
     adjacent.  The two entries for linear constraints are a matrix (say
     'm') and a vector (say 'v'), specifying linear inequality
     constraints of the form 'm.' * parameters + v >= 0'.  The first
     entry for general constraints must be a differentiable
     column-vector valued function (say 'h'), specifying general
     inequality constraints of the form 'h (p[, idx]) >= 0'; 'p' is the
     column vector of optimized paraters and the optional argument 'idx'
     is a logical index.  'h' has to return the values of all
     constraints if 'idx' is not given.  It may choose to return only
     the indexed constraints if 'idx' is given (so computation of the
     other constraints can be spared); in this case, the additional
     setting 'f_inequc_idx' has to be set to 'true'.  In gradient
     determination, this function may be called with an informational
     third argument, whose content depends on the function for gradient
     determination.  If a second entry for general inequality
     constraints is given, it must be a function computing the jacobian
     of the constraints with respect to the parameters.  For this
     function, the description of 'dfdp' above applies, with 2
     exceptions: 1) it is called with 3 arguments since it has an
     additional argument 'idx', a logical index, at second position,
     indicating which rows of the jacobian must be returned (if the
     function chooses to return only indexed rows, the additional
     setting 'df_inequc_idx' has to be set to 'true').  2) the default
     jacobian function calls 'h' with 3 arguments, since the argument
     'idx' is also supplied.  Note that specifying linear constraints as
     general constraints will generally waste performance, even if
     further, non-linear, general constraints are also specified.

     'equc': Equality constraints.  Specified the same way as inequality
     constraints (see 'inequc').

     'cpiv': Function for complementary pivoting, usable in algorithms
     for constraints.  Default:  cpiv_bard.  Only the default function
     is supplied with the package.

     'weights': Array of weights for the residuals.  Dimensions must
     match.

     'TolFun': Minimum fractional improvement in objective function
     (e.g.  sum of squares) in an iteration (termination criterium).
     Default: .0001.

     'MaxIter': Maximum number of iterations (termination criterium).
     Default: backend-specific.

     'fract_prec': Column Vector, minimum fractional change of
     parameters in an iteration (termination criterium if violated in
     two consecutive iterations).  Default: backend-specific.

     'max_fract_change': Column Vector, enforced maximum fractional
     change in parameters in an iteration.  Default: backend-specific.

     'Display': String indicating the degree of verbosity.  Default:
     '"off"'.  Possible values are currently '"off"' (no messages) and
     '"iter"' (some messages after each iteration).  Support of this
     setting and its exact interpretation are backend-specific.

     'plot_cmd': Function enabling backend to plot results or
     intermediate results.  Will be called with current computed
     residuals.  Default: plot nothing.

     'debug': Logical scalar, default: 'false'.  Will be passed to the
     backend, which might print debugging information if true.

     Structure-based parameter handling

     The setting 'param_order' is a cell-array with names of the
     optimized parameters.  If not given, and initial parameters are a
     structure, all parameters in the structure are optimized.  If
     initial parameters are a structure, it is an error if 'param_order'
     is not given and there are any non-structure-based configuration
     items or functions.

     The initial parameters PIN can be given as a structure containing
     at least all fields named in 'param_order'.  In this case the
     returned parameters P will also be a structure.

     Each user-supplied function can be called with the argument
     containing the current parameters being a structure instead of a
     column vector.  For this, a corresponding setting must be set to
     'true': 'f_pstruct' (model function), 'df_pstruct' (jacobian of
     model function), 'f_inequc_pstruct' (general inequality
     constraints), 'df_inequc_pstruct' (jacobian of general inequality
     constraints), 'f_equc_pstruct' (general equality constraints), and
     'df_equc_pstruct' (jacobian of general equality constraints).  If a
     jacobian-function is configured in such a way, it must return the
     columns of the jacobian as fields of a structure under the
     respective parameter names.

     Similarly, for specifying linear constraints, instead of the matrix
     (called 'm' above), a structure containing the rows of the matrix
     in fields under the respective parameter names can be given.  In
     this case, rows containing only zeros need not be given.

     The vector-based settings 'lbound', 'ubound', 'fixed', 'diffp',
     'diff_onesided', 'fract_prec', and 'max_fract_change' can be
     replaced by the setting 'param_config'.  It is a structure that can
     contain fields named in 'param_order'.  For each such field, there
     may be subfields with the same names as the above vector-based
     settings, but containing a scalar value for the respective
     parameter.  If 'param_config' is specified, none of the above
     vector/matrix-based settings may be used.

     Additionally, named parameters are allowed to be non-scalar real
     arrays.  In this case, their dimensions are given by the setting
     'param_dims', a cell-array of dimension vectors, each containing at
     least two dimensions; if not given, dimensions are taken from the
     initial parameters, if these are given in a structure.  Any
     vector-based settings or not structure-based linear constraints
     then must correspond to an order of parameters with all parameters
     reshaped to vectors and concatenated in the user-given order of
     parameter names.  Structure-based settings or structure-based
     initial parameters must contain arrays with dimensions reshapable
     to those of the respective parameters.

     Description of backends (currently only one)

     "lm_svd_feasible"

     A Levenberg/Marquardt algorithm using singular value decomposition
     and featuring constraints which must be met by the initial
     parameters and are attempted to be kept met throughout the
     optimization.

     Parameters with identical lower and upper bounds will be fixed.

     Returned value CVG will be '0', '2', or '3'.

     Backend-specific defaults are: 'MaxIter': 20, 'fract_prec': 'zeros
     (size (parameters))', 'max_fract_change': 'Inf' for all parameters.

     Interpretation of 'Display': if set to '"iter"', currently
     'plot_cmd' is evaluated for each iteration, and some further
     diagnostics may be printed.

     Specific option: 'lm_svd_feasible_alt_s': if falling back to nearly
     gradient descent, do it more like original Levenberg/Marquardt
     method, with descent in each gradient component; for testing only.

     See also: nonlin_curvefit.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Frontend for nonlinear minimization of residuals returned by a model
function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
nrm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 154
 -- Function File: XMIN = nrm( F,X0)
     Using X0 as a starting point find a minimum of the scalar function
     F.  The Newton-Raphson method is used.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Using X0 as a starting point find a minimum of the scalar function F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
optim_problems


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
 Problems for testing optimizers. Documentation is in the code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
 Problems for testing optimizers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
poly_2_ex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
  ex = poly_2_ex (l, f)       - Extremum of a 1-var deg-2 polynomial

 l  : 3 : Values of variable at which polynomial is known.
 f  : 3 : f(i) = Value of the degree-2 polynomial at l(i).
 
 ex : 1 : Value for which f reaches its extremum
 
 Assuming that f(i) = a*l(i)^2 + b*l(i) + c = P(l(i)) for some a, b, c,
 ex is the extremum of the polynome P.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
  ex = poly_2_ex (l, f)       - Extremum of a 1-var deg-2 polynomial



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
polyconf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1439
 [y,dy] = polyconf(p,x,s)

   Produce prediction intervals for the fitted y. The vector p 
   and structure s are returned from polyfit or wpolyfit. The 
   x values are where you want to compute the prediction interval.

 polyconf(...,['ci'|'pi'])

   Produce a confidence interval (range of likely values for the
   mean at x) or a prediction interval (range of likely values 
   seen when measuring at x).  The prediction interval tells
   you the width of the distribution at x.  This should be the same
   regardless of the number of measurements you have for the value
   at x.  The confidence interval tells you how well you know the
   mean at x.  It should get smaller as you increase the number of
   measurements.  Error bars in the physical sciences usually show 
   a 1-alpha confidence value of erfc(1/sqrt(2)), representing
   one standandard deviation of uncertainty in the mean.

 polyconf(...,1-alpha)

   Control the width of the interval. If asking for the prediction
   interval 'pi', the default is .05 for the 95% prediction interval.
   If asking for the confidence interval 'ci', the default is
   erfc(1/sqrt(2)) for a one standard deviation confidence interval.

 Example:
  [p,s] = polyfit(x,y,1);
  xf = linspace(x(1),x(end),150);
  [yf,dyf] = polyconf(p,xf,s,'ci');
  plot(xf,yf,'g-;fit;',xf,yf+dyf,'g.;;',xf,yf-dyf,'g.;;',x,y,'xr;data;');
  plot(x,y-polyval(p,x),';residuals;',xf,dyf,'g-;;',xf,-dyf,'g-;;');



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
 [y,dy] = polyconf(p,x,s)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polyfitinf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4862
 function [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT,REF0)

   Best polynomial approximation in discrete uniform norm

   INPUT VARIABLES:

   M       : degree of the fitting polynomial
   N       : number of data points
   X(N)    : x-coordinates of data points
   Y(N)    : y-coordinates of data points
   K       : character of the polynomial:
                   K = 0 : mixed parity polynomial
                   K = 1 : odd polynomial  ( X(1) must be >  0 )
                   K = 2 : even polynomial ( X(1) must be >= 0 )
   EPSH    : tolerance for leveling. A useful value for 24-bit
             mantissa is EPSH = 2.0E-7
   MAXIT   : upper limit for number of exchange steps
   REF0(M2): initial alternating set ( N-vector ). This is an
             OPTIONAL argument. The length M2 is given by:
                   M2 = M + 2                      , if K = 0
                   M2 = integer part of (M+3)/2    , if K = 1
                   M2 = 2 + M/2 (M must be even)   , if K = 2

   OUTPUT VARIABLES:

   A       : polynomial coefficients of the best approximation
             in order of increasing powers:
                   p*(x) = A(1) + A(2)*x + A(3)*x^2 + ...
   REF     : selected alternating set of points
   HMAX    : maximum deviation ( uniform norm of p* - f )
   H       : pointwise approximation errors
	R		: total number of iterations
   EQUAL   : success of failure of algorithm
                   EQUAL=1 :  succesful
                   EQUAL=0 :  convergence not acheived
                   EQUAL=-1:  input error
                   EQUAL=-2:  algorithm failure

   Relies on function EXCH, provided below.

   Example: 
   M = 5; N = 10000; K = 0; EPSH = 10^-12; MAXIT = 10;
   X = linspace(-1,1,N);   % uniformly spaced nodes on [-1,1]
   k=1; Y = abs(X).^k;     % the function Y to approximate
   [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT);
   p = polyval(A,X); plot(X,Y,X,p) % p is the best approximation

   Note: using an even value of M, e.g., M=2, in the example above, makes
   the algorithm to fail with EQUAL=-2, because of collocation, which
   appears because both the appriximating function and the polynomial are
   even functions. The way aroung it is to approximate only the right half
   of the function, setting K = 2 : even polynomial. For example: 

 N = 10000; K = 2; EPSH = 10^-12; MAXIT = 10;  X = linspace(0,1,N);
 for i = 1:2
     k = 2*i-1; Y = abs(X).^k;
     for j = 1:4
         M = 2^j;
         [~,~,HMAX] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT);
         approxerror(i,j) = HMAX;
     end
 end
 disp('Table 3.1 from Approximation theory and methods, M.J.D.POWELL, p. 27');
 disp(' ');
 disp('            n          K=1          K=3'); 
 disp(' '); format short g;
 disp([(2.^(1:4))' approxerror']);

   ALGORITHM:

   Computation of the polynomial that best approximates the data (X,Y)
   in the discrete uniform norm, i.e. the polynomial with the  minimum
   value of max{ | p(x_i) - y_i | , x_i in X } . That polynomial, also
   known as minimax polynomial, is obtained by the exchange algorithm,
   a finite iterative process requiring, at most,
      n
    (   ) iterations ( usually p = M + 2. See also function EXCH ).
      p
   since this number can be very large , the routine  may not converge
   within MAXIT iterations . The  other possibility of  failure occurs
   when there is insufficient floating point precision  for  the input
   data chosen.

   CREDITS: This routine was developed and modified as 
   computer assignments in Approximation Theory courses by 
   Prof. Andrew Knyazev, University of Colorado Denver, USA.

   Team Fall 98 (Revision 1.0):
           Chanchai Aniwathananon
           Crhistopher Mehl
           David A. Duran
           Saulo P. Oliveira

   Team Spring 11 (Revision 1.1): Manuchehr Aminian

   The algorithm and the comments are based on a FORTRAN code written
   by Joseph C. Simpson. The code is available on Netlib repository:
   http://www.netlib.org/toms/501
   See also: Communications of the ACM, V14, pp.355-356(1971)

   NOTES:

   1) A may contain the collocation polynomial
   2) If MAXIT is exceeded, REF contains a new reference set
   3) M, EPSH and REF can be altered during the execution
   4) To keep consistency to the original code , EPSH can be
   negative. However, the use of REF0 is *NOT* determined by
   EPSH< 0, but only by its inclusion as an input parameter.

   Some parts of the code can still take advantage of vectorization.  

   Revision 1.0 from 1998 is a direct human translation of 
   the FORTRAN code http://www.netlib.org/toms/501
   Revision 1.1 is a clean-up and technical update.  
   Tested on MATLAB Version 7.11.0.584 (R2010b) and 
   GNU Octave Version 3.2.4



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 function [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT,REF0)

   B



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
powell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2686
 -- Function File: [ P , OBJ_VALUE, CONVERGENCE, ITERS, NEVS] = powell
          (F, P0, CONTROL)
     Multidimensional minimization (direction-set method).  Implements a
     direction-set (Powell's) method for multidimensional minimization
     of a function without calculation of the gradient [1, 2]

     Arguments
--------------

        * F: name of function to minimize (string or handle), which
          should accept one input variable (see example for how to pass
          on additional input arguments)

        * P0: An initial value of the function argument to minimize

        * OPTIONS: an optional structure, which can be generated by
          optimset, with some or all of the following fields:
             - MaxIter: maximum iterations (positive integer, or -1 or
               Inf for unlimited (default))
             - TolFun: minimum amount by which function value must
               decrease in each iteration to continue (default is 1E-8)
             - MaxFunEvals: maximum function evaluations (positive
               integer, or -1 or Inf for unlimited (default))
             - SearchDirections: an n*n matrix whose columns contain the
               initial set of (presumably orthogonal) directions to
               minimize along, where n is the number of elements in the
               argument to be minimized for; or an n*1 vector of
               magnitudes for the initial directions (defaults to the
               set of unit direction vectors)

     Examples
-------------

          y = @(x, s) x(1) ^ 2 + x(2) ^ 2 + s;
          o = optimset('MaxIter', 100, 'TolFun', 1E-10);
          s = 1;
          [x_optim, y_min, conv, iters, nevs] = powell(@(x) y(x, s), [1 0.5], o); %pass y wrapped in an anonymous function so that all other arguments to y, which are held constant, are set
          %should return something like x_optim = [4E-14 3E-14], y_min = 1, conv = 1, iters = 2, nevs = 24


     Returns:
-------------

        * P: the minimizing value of the function argument
        * OBJ_VALUE: the value of F() at P
        * CONVERGENCE: 1 if normal convergence, 0 if not
        * ITERS: number of iterations performed
        * NEVS: number of function evaluations

     References
---------------

       1. Powell MJD (1964), An efficient method for finding the minimum
          of a function of several variables without calculating
          derivatives, 'Computer Journal', 7 :155-162

       2. Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (1992).
          'Numerical Recipes in Fortran: The Art of Scientific
          Computing' (2nd Ed.).  New York: Cambridge University Press
          (Section 10.5)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Multidimensional minimization (direction-set method).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
residmin_stat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3202
 -- Function File: INFO = residmin_stat (F, P, SETTINGS)
     Frontend for computation of statistics for a residual-based
     minimization.

     SETTINGS is a structure whose fields can be set by 'optimset' with
     Octave versions 3.3.55 or greater; with older Octave versions, the
     fields must be set directly and in the correct case.  With SETTINGS
     the computation of certain statistics is requested by setting the
     fields 'ret_<name_of_statistic>' to 'true'.  The respective
     statistics will be returned in a structure as fields with name
     '<name_of_statistic>'.  Depending on the requested statistic and on
     the additional information provided in SETTINGS, F and P may be
     empty.  Otherwise, F is the model function of an optimization (the
     interface of F is described e.g.  in 'nonlin_residmin', please see
     there), and P is a real column vector with parameters resulting
     from the same optimization.

     Currently, the following statistics (or general information) can be
     requested:

     'dfdp': Jacobian of model function with respect to parameters.

     'covd': Covariance matrix of data (typically guessed by applying a
     factor to the covariance matrix of the residuals).

     'covp': Covariance matrix of final parameters.

     'corp': Correlation matrix of final parameters.

     Further SETTINGS

     The functionality of the interface is similar to 'nonlin_residmin'.
     In particular, structure-based, possibly non-scalar, parameters and
     flagging parameters as fixed are possible.  The following settings
     have the same meaning as in 'nonlin_residmin' (please refer to
     there): 'param_order', 'param_dims', 'f_pstruct', 'df_pstruct',
     'diffp', 'diff_onesided', 'complex_step_derivative_f', 'cstep',
     'fixed', and 'weights'.  Similarly, 'param_config' can be used, but
     only with fields corresponding to the settings 'fixed', 'diffp',
     and 'diff_onesided'.

     'dfdp' can be set in the same way as in 'nonlin_residmin', but
     alternatively may already contain the computed Jacobian of the
     model function at the final parameters in matrix- or
     structure-form.  Users may pass information on the result of the
     optimization in 'residuals' (self-explaining) and 'covd'
     (covariance matrix of data).  In many cases the type of objective
     function of the optimization must be specified in 'objf_type';
     currently, there is only a backend for the type "wls" (weighted
     least squares).

     Backend-specific information

     The backend for 'objf_type == "wls"' (currently the only backend)
     computes 'covd' (due to user request or as a prerequisite for
     'covp' and 'corp') as a diagonal matrix by assuming that the
     variances of data points are proportional to the reciprocal of the
     squared 'weights' and guessing the factor of proportionality from
     the residuals.  If 'covp' is not defined (e.g.  because the
     Jacobian has no full rank), it makes an attempt to still compute
     its uniquely defined elements, if any, and to find the additional
     defined elements (being '1' or '-1'), if any, in 'corp'.

     See also: curvefit_stat.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Frontend for computation of statistics for a residual-based
minimization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
rosenbrock


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 195
 Rosenbrock function - used to create example obj. fns.

 Function value and gradient vector of the rosenbrock function
 The minimizer is at the vector (1,1,..,1),
 and the minimized value is 0.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 Rosenbrock function - used to create example obj.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
samin_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
 dimensionality



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
 dimensionality




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
test_min_1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
 [x,v,niter] = feval (optim_func, "testfunc","dtestf", xinit);



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
 [x,v,niter] = feval (optim_func, "testfunc","dtestf", xinit);




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
test_min_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 [xlev,vlev,nlev] = feval(optim_func, "ff", "dff", xinit) ;



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 [xlev,vlev,nlev] = feval(optim_func, "ff", "dff", xinit) ;




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
test_min_3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
 [xlev,vlev,nlev] = feval (optim_func, "ff", "dff", xinit, "extra", extra) ;
 [xlev,vlev,nlev] = feval \
     (optim_func, "ff", "dff", list (xinit, obsmat, obses));



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 [xlev,vlev,nlev] = feval (optim_func, "ff", "dff", xinit, "extra", extra) ;
 [x



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
test_min_4


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
 Plain run, just to make sure ######################################
 Minimum wrt 'x' is y0
 [xlev,vlev,nlev] = feval (optim_func, "ff", "dff", {x0,y0,1});
 ctl.df = "dff";



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Plain run, just to make sure ######################################
 Minimum wr



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
test_minimize_1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
 Plain run, just to make sure ######################################
 Minimum wrt 'x' is y0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Plain run, just to make sure ######################################
 Minimum wr



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
test_nelder_mead_min_1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
 Use vanilla nelder_mead_min



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
 Use vanilla nelder_mead_min




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
test_nelder_mead_min_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70

 Test using volume #################################################



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70

 Test using volume #################################################




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
test_wpolyfit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
          x         y          dy



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
          x         y          dy




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vfzero


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1967
 -- Function File: vfzero (FUN, X0)
 -- Function File: vfzero (FUN, X0, OPTIONS)
 -- Function File: [X, FVAL, INFO, OUTPUT] = vfzero (...)
     A variant of 'fzero'.  Finds a zero of a vector-valued multivariate
     function where each output element only depends on the input
     element with the same index (so the Jacobian is diagonal).

     FUN should be a handle or name of a function returning a column
     vector.  X0 should be a two-column matrix, each row specifying two
     points which bracket a zero of the respective output element of
     FUN.

     If X0 is a single-column matrix then several nearby and distant
     values are probed in an attempt to obtain a valid bracketing.  If
     this is not successful, the function fails.  OPTIONS is a structure
     specifying additional options.  Currently, 'vfzero' recognizes
     these options: '"FunValCheck"', '"OutputFcn"', '"TolX"',
     '"MaxIter"', '"MaxFunEvals"'.  For a description of these options,
     see *note optimset: doc-optimset.

     On exit, the function returns X, the approximate zero and FVAL, the
     function value thereof.  INFO is a column vector of exit flags that
     can have these values:

        * 1 The algorithm converged to a solution.

        * 0 Maximum number of iterations or function evaluations has
          been reached.

        * -1 The algorithm has been terminated from user output
          function.

        * -5 The algorithm may have converged to a singular point.

     OUTPUT is a structure containing runtime information about the
     'fzero' algorithm.  Fields in the structure are:

        * iterations Number of iterations through loop.

        * nfev Number of function evaluations.

        * bracketx A two-column matrix with the final bracketing of the
          zero along the x-axis.

        * brackety A two-column matrix with the final bracketing of the
          zero along the y-axis.

     See also: optimset, fsolve.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
A variant of 'fzero'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
wpolyfit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2922
 -- Function File: [P, S] = wpolyfit (X, Y, DY, N)
     Return the coefficients of a polynomial P(X) of degree N that
     minimizes 'sumsq (p(x(i)) - y(i))', to best fit the data in the
     least squares sense.  The standard error on the observations Y if
     present are given in DY.

     The returned value P contains the polynomial coefficients suitable
     for use in the function polyval.  The structure S returns
     information necessary to compute uncertainty in the model.

     To compute the predicted values of y with uncertainty use
          [y,dy] = polyconf(p,x,s,'ci');
     You can see the effects of different confidence intervals and
     prediction intervals by calling the wpolyfit internal plot function
     with your fit:
          feval('wpolyfit:plt',x,y,dy,p,s,0.05,'pi')
     Use DY=[] if uncertainty is unknown.

     You can use a chi^2 test to reject the polynomial fit:
          p = 1-chi2cdf(s.normr^2,s.df);
     p is the probability of seeing a chi^2 value higher than that which
     was observed assuming the data are normally distributed around the
     fit.  If p < 0.01, you can reject the fit at the 1% level.

     You can use an F test to determine if a higher order polynomial
     improves the fit:
          [poly1,S1] = wpolyfit(x,y,dy,n);
          [poly2,S2] = wpolyfit(x,y,dy,n+1);
          F = (S1.normr^2 - S2.normr^2)/(S1.df-S2.df)/(S2.normr^2/S2.df);
          p = 1-f_cdf(F,S1.df-S2.df,S2.df);
     p is the probability of observing the improvement in chi^2 obtained
     by adding the extra parameter to the fit.  If p < 0.01, you can
     reject the lower order polynomial at the 1% level.

     You can estimate the uncertainty in the polynomial coefficients
     themselves using
          dp = sqrt(sumsq(inv(s.R'))'/s.df)*s.normr;
     but the high degree of covariance amongst them makes this a
     questionable operation.

 -- Function File: [P, S, MU] = wpolyfit (...)

     If an additional output 'mu = [mean(x),std(x)]' is requested then
     the X values are centered and normalized prior to computing the
     fit.  This will give more stable numerical results.  To compute a
     predicted Y from the returned model use 'y = polyval(p,
     (x-mu(1))/mu(2)'

 -- Function File: wpolyfit (...)

     If no output arguments are requested, then wpolyfit plots the data,
     the fitted line and polynomials defining the standard error range.

     Example
          x = linspace(0,4,20);
          dy = (1+rand(size(x)))/2;
          y = polyval([2,3,1],x) + dy.*randn(size(x));
          wpolyfit(x,y,dy,2);

 -- Function File: wpolyfit (..., 'origin')

     If 'origin' is specified, then the fitted polynomial will go
     through the origin.  This is generally ill-advised.  Use with
     caution.

     Hocking, RR (2003).  Methods and Applications of Linear Models.
     New Jersey: John Wiley and Sons, Inc.

See also: polyfit,polyconf.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the coefficients of a polynomial P(X) of degree N that minimizes
'sumsq (



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
wrap_f_dfdp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
 [ret1, ret2] = wrap_f_dfdp (f, dfdp, varargin)

 f and dftp should be the objective function (or "model function" in
 curve fitting) and its jacobian, respectively, of an optimization
 problem. ret1: f (varagin{:}), ret2: dfdp (varargin{:}). ret2 is
 only computed if more than one output argument is given. This
 manner of calling f and dfdp is needed by some optimization
 functions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 [ret1, ret2] = wrap_f_dfdp (f, dfdp, varargin)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wsolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1736
 [x,s] = wsolve(A,y,dy)

 Solve a potentially over-determined system with uncertainty in
 the values. 

     A x = y +/- dy

 Use QR decomposition for increased accuracy.  Estimate the 
 uncertainty for the solution from the scatter in the data.

 The returned structure s contains

    normr = sqrt( A x - y ), weighted by dy
    R such that R'R = A'A
    df = n-p, n = rows of A, p = columns of A

 See polyconf for details on how to use s to compute dy.
 The covariance matrix is inv(R'*R).  If you know that the
 parameters are independent, then uncertainty is given by
 the diagonal of the covariance matrix, or 

    dx = sqrt(N*sumsq(inv(s.R'))')

 where N = normr^2/df, or N = 1 if df = 0.

 Example 1: weighted system

    A=[1,2,3;2,1,3;1,1,1]; xin=[1;2;3]; 
    dy=[0.2;0.01;0.1]; y=A*xin+randn(size(dy)).*dy;
    [x,s] = wsolve(A,y,dy);
    dx = sqrt(sumsq(inv(s.R'))');
    res = [xin, x, dx]

 Example 2: weighted overdetermined system  y = x1 + 2*x2 + 3*x3 + e

    A = fullfact([3,3,3]); xin=[1;2;3];
    y = A*xin; dy = rand(size(y))/50; y+=dy.*randn(size(y));
    [x,s] = wsolve(A,y,dy);
    dx = s.normr*sqrt(sumsq(inv(s.R'))'/s.df);
    res = [xin, x, dx]

 Note there is a counter-intuitive result that scaling the
 uncertainty in the data does not affect the uncertainty in
 the fit.  Indeed, if you perform a monte carlo simulation
 with x,y datasets selected from a normal distribution centered
 on y with width 10*dy instead of dy you will see that the
 variance in the parameters indeed increases by a factor of 100.
 However, if the error bars really do increase by a factor of 10
 you should expect a corresponding increase in the scatter of 
 the data, which will increase the variance computed by the fit.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
 [x,s] = wsolve(A,y,dy)