This file is indexed.

/usr/share/octave/packages/optim-1.3.0/vfzero.m is in octave-optim 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
## Copyright (C) 2008, 2009 VZLU Prague, a.s.
## Copyright (C) 2010 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} vfzero (@var{fun}, @var{x0})
## @deftypefnx {Function File} {} vfzero (@var{fun}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} vfzero (@dots{})
## A variant of @code{fzero}. Finds a zero of a vector-valued
## multivariate function where each output element only depends on the
## input element with the same index (so the Jacobian is diagonal).
##
## @var{fun} should be a handle or name of a function returning a column
## vector.  @var{x0} should be a two-column matrix, each row specifying
## two points which bracket a zero of the respective output element of
## @var{fun}.
##
## If @var{x0} is a single-column matrix then several nearby and distant
## values are probed in an attempt to obtain a valid bracketing.  If
## this is not successful, the function fails. @var{options} is a
## structure specifying additional options. Currently, @code{vfzero}
## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"},
## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}. For a
## description of these options, see @ref{doc-optimset,,optimset}.
##
## On exit, the function returns @var{x}, the approximate zero and
## @var{fval}, the function value thereof. @var{info} is a column vector
## of exit flags  that can have these values:
##
## @itemize 
## @item 1 The algorithm converged to a solution.
##
## @item 0 Maximum number of iterations or function evaluations has been
## reached.
##
## @item -1 The algorithm has been terminated from user output function.
##
## @item -5 The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm.  Fields in the structure are:
##
## @itemize
## @item iterations Number of iterations through loop.
##
## @item nfev Number of function evaluations.
##
## @item bracketx A two-column matrix with the final bracketing of the
## zero along the x-axis.
##
## @item brackety A two-column matrix with the final bracketing of the
## zero along the y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn

## This is essentially the ACM algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions
## on Mathematical Software, Vol. 21, No. 3, September 1995. Although
## the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure. Further, this approach reduces
## the need for external functions and error handling. The algorithm has
## also been slightly modified.

## Author: Jaroslav Hajek <highegg@gmail.com>

## PKG_ADD: __all_opts__ ("vfzero");

function [x, fval, info, output] = vfzero (fun, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults'))
    x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8, ...
    "OutputFcn", [], "FunValCheck", "off");
    return;
  endif

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (ischar (fun))
    fun = str2func (fun, "global");
  endif

  ## TODO
  ## displev = optimget (options, "Display", "notify");
  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", 1e-8);
  maxiter = optimget (options, "MaxIter", Inf);
  maxfev = optimget (options, "MaxFunEvals", Inf);
  nx = rows (x0);
  ## fun may assume a certain length of x, so we will always call it
  ## with the full-length x, even if only some elements are needed

  persistent mu = 0.5;

  if (funvalchk)
    ## Replace fun with a guarded version.
    fun = @(x) guarded_eval (fun, x);
  endif

  ## The default exit flag if exceeded number of iterations.
  info = zeros (nx, 1);
  niter = 0;
  nfev = 0;

  x = fval = fc = a = fa = b = fb = aa = c = u = fu = NaN (nx, 1);
  bracket_ready = false (nx, 1);
  eps = eps (class (x0));

  ## Prepare...
  a = x0(:, 1);
  fa = fun (a)(:); 
  nfev = 1;
  if (columns (x0) > 1)
    b = x0(:, 2);
    fb = fun (b)(:);
    nfev += 1;
  else
    ## Try to get b.
    aa(idx = a == 0) = 1;
    aa(! idx) = a(! idx);
    for tb = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa]
      tfb = fun (tb)(:); nfev += 1;
      idx = ! bracket_ready & sign (fa) .* sign (tfb) <= 0;
      bracket_ready |= idx;
      b(idx) = tb(idx);
      fb(idx) = tfb(idx);
      if (all (bracket_ready))
        break;
      endif
    endfor
  endif

  tp = a(idx = b < a);
  a(idx) = b(idx);
  b(idx) = tp;

  tp = fa(idx);
  fa(idx) = fb(idx);
  fb(idx) = tp;

  if (! all (sign (fa) .* sign (fb) <= 0))
    error ("fzero:bracket", "vfzero: not a valid initial bracketing");
  endif

  slope0 = (fb - fa) ./ (b - a);

  idx = fa == 0;
  b(idx) = a(idx);
  fb(idx) = fa(idx);

  idx = (! idx & fb == 0);
  a(idx) = b(idx);
  fa(idx) = fb(idx);

  itype = ones (nx, 1);

  idx = abs (fa) < abs (fb);
  u(idx) = a(idx); fu(idx) = fa(idx);
  u(! idx) = b(! idx); fu(! idx) = fb(! idx);

  d = e = u;
  fd = fe = fu;
  mba = mu * (b - a);
  not_ready = true (nx, 1);
  while (niter < maxiter && nfev < maxfev && any (not_ready))

    ## itype == 1
    type1idx = not_ready & itype == 1;
    ## The initial test.
    idx = b - a <= 2*(2 * eps * abs (u) + tolx) & type1idx;
    x(idx) = u(idx); fval(idx) = fu(idx);
    info(idx) = 1;
    not_ready(idx) = false;
    type1idx &= not_ready;
    exclidx = type1idx;
    ## Secant step.
    idx = type1idx & ...
	(tidx = abs (fa) <= 1e3*abs (fb) & abs (fb) <= 1e3*abs (fa));
    c(idx) = u(idx) - (a(idx) - b(idx)) ./ (fa(idx) - fb(idx)) .* fu(idx);
    ## Bisection step.
    idx = type1idx & ! tidx;
    c(idx) = 0.5*(a(idx) + b(idx));
    d(type1idx) = u(type1idx); fd(type1idx) = fu(type1idx);
    itype(type1idx) = 5;

    ## itype == 2 or 3
    type23idx = not_ready & ! exclidx & (itype == 2 | itype == 3);
    exclidx |= type23idx;
    uidx = cellfun (@ (x) length (unique (x)), ...
		    num2cell ([fa, fb, fd, fe], 2)) == 4;
    oidx = sign (c - a) .* sign (c - b) > 0;
    ## Inverse cubic interpolation.
    idx = type23idx & (uidx & ! oidx);
    q11 = (d(idx) - e(idx)) .* fd(idx) ./ (fe(idx) - fd(idx));
    q21 = (b(idx) - d(idx)) .* fb(idx) ./ (fd(idx) - fb(idx));
    q31 = (a(idx) - b(idx)) .* fa(idx) ./ (fb(idx) - fa(idx));
    d21 = (b(idx) - d(idx)) .* fd(idx) ./ (fd(idx) - fb(idx));
    d31 = (a(idx) - b(idx)) .* fb(idx) ./ (fb(idx) - fa(idx));
    q22 = (d21 - q11) .* fb(idx) ./ (fe(idx) - fb(idx));
    q32 = (d31 - q21) .* fa(idx) ./ (fd(idx) - fa(idx));
    d32 = (d31 - q21) .* fd(idx) ./ (fd(idx) - fa(idx));
    q33 = (d32 - q22) .* fa(idx) ./ (fe(idx) - fa(idx));
    c(idx) = a(idx) + q31 + q32 + q33;
    ## Quadratic interpolation + newton.
    idx = type23idx & (oidx | ! uidx);
    a0 = fa(idx);
    a1 = (fb(idx) - fa(idx))./(b(idx) - a(idx));
    a2 = ((fd(idx) - fb(idx))./(d(idx) - b(idx)) - a1) ./ (d(idx) - a(idx));
    ## Modification 1: this is simpler and does not seem to be worse.
    c(idx) = a(idx) - a0./a1;
    taidx = a2 != 0;
    tidx = idx;
    tidx(tidx) = taidx;
    c(tidx) = a(tidx)(:) - (a0(taidx)./a1(taidx))(:);
    for i = 1:3
      tidx &= i <= itype;
      taidx = tidx(idx);
      pc = a0(taidx)(:) + (a1(taidx)(:) + ...
			   a2(taidx)(:).*(c(tidx) - b(tidx))(:)) ...
	  .*(c(tidx) - a(tidx))(:);
      pdc = a1(taidx)(:) + a2(taidx)(:).*(2*c(tidx) - a(tidx) - b(tidx))(:);
      tidx0 = tidx;
      tidx0(tidx0, 1) &= (p0idx = pdc == 0);
      taidx0 = tidx0(idx);
      tidx(tidx, 1) &= ! p0idx;
      c(tidx0) = a(tidx0)(:) - (a0(taidx0)./a1(taidx0))(:);
      c(tidx) = c(tidx)(:) - (pc(! p0idx)./pdc(! p0idx))(:);
    endfor
    itype(type23idx) += 1; 

    ## itype == 4
    type4idx = not_ready & ! exclidx & itype == 4;
    exclidx |= type4idx;
    ## Double secant step.
    idx = type4idx;
    c(idx) = u(idx) - 2*(b(idx) - a(idx))./(fb(idx) - fa(idx)).*fu(idx);
    ## Bisect if too far.
    idx = type4idx & abs (c - u) > 0.5*(b - a);
    c(idx) = 0.5 * (b(idx) + a(idx));
    itype(type4idx) = 5;

    ## itype == 5
    type5idx = not_ready & ! exclidx & itype == 5;
    ## Bisection step.
    idx = type5idx;
    c(idx) = 0.5 * (b(idx) + a(idx));
    itype(type5idx) = 2;

    ## Don't let c come too close to a or b.
    delta = 2*0.7*(2 * eps * abs (u) + tolx);
    nidx = not_ready & ! (idx = b - a <= 2*delta);
    idx &= not_ready;
    c(idx) = (a(idx) + b(idx))/2;
    c(nidx) = max (a(nidx) + delta(nidx), ...
		   min (b(nidx) - delta(nidx), c(nidx)));

    ## Calculate new point.
    idx = not_ready;
    x(idx, 1) = c(idx, 1);
    if (any (idx))
      c(! idx) = u(! idx); # to have some working place-holders since
				# fun() might expect full-length
				# argument
      fval(idx, 1) = fc(idx, 1) = fun (c)(:)(idx, 1);
      niter ++; nfev ++;
    endif

    ## Modification 2: skip inverse cubic interpolation if
    ## nonmonotonicity is detected.
    nidx = not_ready & ! (idx = sign (fc - fa) .* sign (fc - fb) >= 0);
    idx &= not_ready;
    ## The new point broke monotonicity. 
    ## Disable inverse cubic.
    fe(idx) = fc(idx);
    ##
    e(nidx) = d(nidx); fe(nidx) = fd(nidx);

    ## Bracketing.
    idx1 = not_ready & sign (fa) .* sign (fc) < 0;
    idx2 = not_ready & ! idx1 & sign (fb) .* sign (fc) < 0;
    idx3 = not_ready & ! (idx1 | idx2) & fc == 0;
    d(idx1) = b(idx1); fd(idx1) = fb(idx1);
    b(idx1) = c(idx1); fb(idx1) = fc(idx1);
    d(idx2) = a(idx2); fd(idx2) = fa(idx2);
    a(idx2) = c(idx2); fa(idx2) = fc(idx2);
    a(idx3) = b(idx3) = c(idx3); fa(idx3) = fb(idx3) = fc(idx3);
    info(idx3) = 1;
    not_ready(idx3) = false;
    if (any (not_ready & ! (idx1 | idx2 | idx3)))
      ## This should never happen.
      error ("fzero:bracket", "vfzero: zero point is not bracketed");
    endif

    ## If there's an output function, use it now.
    if (! isempty (outfcn))
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      idx = not_ready & outfcn (x, optv, "iter");
      info(idx) = -1;
      not_ready(idx) = false;
    endif

    nidx = not_ready & ! (idx = abs (fa) < abs (fb));
    idx &= not_ready;
    u(idx) = a(idx); fu(idx) = fa(idx);
    u(nidx) = b(nidx); fu(nidx) = fb(nidx);
    idx = not_ready & b - a <= 2*(2 * eps * abs (u) + tolx);
    info(idx) = 1;
    not_ready(idx) = false;

    ## Skip bisection step if successful reduction.
    itype(not_ready & itype == 5 & (b - a) <= mba) = 2;
    idx = not_ready & itype == 2;
    mba(idx) = mu * (b(idx) - a(idx));
  endwhile

  ## Check solution for a singularity by examining slope
  idx = not_ready & info == 1 & (b - a) != 0;
  idx(idx, 1) &= ...
      abs ((fb(idx, 1) - fa(idx, 1))./(b(idx, 1) - a(idx, 1)) ...
	   ./ slope0(idx, 1)) > max (1e6, 0.5/(eps+tolx));
  info(idx) = - 5;

  output.iterations = niter;
  output.funcCount = nfev;
  output.bracketx = [a, b];
  output.brackety = [fa, fb];

endfunction

## An assistant function that evaluates a function handle and checks for
## bad results.
function fx = guarded_eval (fun, x)
  fx = fun (x);
  if (! isreal (fx))
    error ("fzero:notreal", "vfzero: non-real value encountered"); 
  elseif (any (isnan (fx)))
    error ("fzero:isnan", "vfzero: NaN value encountered"); 
  endif
endfunction

%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert(vfzero(@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert(vfzero(@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)