/usr/share/octave/packages/optim-1.3.0/vfzero.m is in octave-optim 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | ## Copyright (C) 2008, 2009 VZLU Prague, a.s.
## Copyright (C) 2010 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} vfzero (@var{fun}, @var{x0})
## @deftypefnx {Function File} {} vfzero (@var{fun}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} vfzero (@dots{})
## A variant of @code{fzero}. Finds a zero of a vector-valued
## multivariate function where each output element only depends on the
## input element with the same index (so the Jacobian is diagonal).
##
## @var{fun} should be a handle or name of a function returning a column
## vector. @var{x0} should be a two-column matrix, each row specifying
## two points which bracket a zero of the respective output element of
## @var{fun}.
##
## If @var{x0} is a single-column matrix then several nearby and distant
## values are probed in an attempt to obtain a valid bracketing. If
## this is not successful, the function fails. @var{options} is a
## structure specifying additional options. Currently, @code{vfzero}
## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"},
## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}. For a
## description of these options, see @ref{doc-optimset,,optimset}.
##
## On exit, the function returns @var{x}, the approximate zero and
## @var{fval}, the function value thereof. @var{info} is a column vector
## of exit flags that can have these values:
##
## @itemize
## @item 1 The algorithm converged to a solution.
##
## @item 0 Maximum number of iterations or function evaluations has been
## reached.
##
## @item -1 The algorithm has been terminated from user output function.
##
## @item -5 The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm. Fields in the structure are:
##
## @itemize
## @item iterations Number of iterations through loop.
##
## @item nfev Number of function evaluations.
##
## @item bracketx A two-column matrix with the final bracketing of the
## zero along the x-axis.
##
## @item brackety A two-column matrix with the final bracketing of the
## zero along the y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn
## This is essentially the ACM algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions
## on Mathematical Software, Vol. 21, No. 3, September 1995. Although
## the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure. Further, this approach reduces
## the need for external functions and error handling. The algorithm has
## also been slightly modified.
## Author: Jaroslav Hajek <highegg@gmail.com>
## PKG_ADD: __all_opts__ ("vfzero");
function [x, fval, info, output] = vfzero (fun, x0, options = struct ())
## Get default options if requested.
if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults'))
x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8, ...
"OutputFcn", [], "FunValCheck", "off");
return;
endif
if (nargin < 2 || nargin > 3)
print_usage ();
endif
if (ischar (fun))
fun = str2func (fun, "global");
endif
## TODO
## displev = optimget (options, "Display", "notify");
funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
outfcn = optimget (options, "OutputFcn");
tolx = optimget (options, "TolX", 1e-8);
maxiter = optimget (options, "MaxIter", Inf);
maxfev = optimget (options, "MaxFunEvals", Inf);
nx = rows (x0);
## fun may assume a certain length of x, so we will always call it
## with the full-length x, even if only some elements are needed
persistent mu = 0.5;
if (funvalchk)
## Replace fun with a guarded version.
fun = @(x) guarded_eval (fun, x);
endif
## The default exit flag if exceeded number of iterations.
info = zeros (nx, 1);
niter = 0;
nfev = 0;
x = fval = fc = a = fa = b = fb = aa = c = u = fu = NaN (nx, 1);
bracket_ready = false (nx, 1);
eps = eps (class (x0));
## Prepare...
a = x0(:, 1);
fa = fun (a)(:);
nfev = 1;
if (columns (x0) > 1)
b = x0(:, 2);
fb = fun (b)(:);
nfev += 1;
else
## Try to get b.
aa(idx = a == 0) = 1;
aa(! idx) = a(! idx);
for tb = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa]
tfb = fun (tb)(:); nfev += 1;
idx = ! bracket_ready & sign (fa) .* sign (tfb) <= 0;
bracket_ready |= idx;
b(idx) = tb(idx);
fb(idx) = tfb(idx);
if (all (bracket_ready))
break;
endif
endfor
endif
tp = a(idx = b < a);
a(idx) = b(idx);
b(idx) = tp;
tp = fa(idx);
fa(idx) = fb(idx);
fb(idx) = tp;
if (! all (sign (fa) .* sign (fb) <= 0))
error ("fzero:bracket", "vfzero: not a valid initial bracketing");
endif
slope0 = (fb - fa) ./ (b - a);
idx = fa == 0;
b(idx) = a(idx);
fb(idx) = fa(idx);
idx = (! idx & fb == 0);
a(idx) = b(idx);
fa(idx) = fb(idx);
itype = ones (nx, 1);
idx = abs (fa) < abs (fb);
u(idx) = a(idx); fu(idx) = fa(idx);
u(! idx) = b(! idx); fu(! idx) = fb(! idx);
d = e = u;
fd = fe = fu;
mba = mu * (b - a);
not_ready = true (nx, 1);
while (niter < maxiter && nfev < maxfev && any (not_ready))
## itype == 1
type1idx = not_ready & itype == 1;
## The initial test.
idx = b - a <= 2*(2 * eps * abs (u) + tolx) & type1idx;
x(idx) = u(idx); fval(idx) = fu(idx);
info(idx) = 1;
not_ready(idx) = false;
type1idx &= not_ready;
exclidx = type1idx;
## Secant step.
idx = type1idx & ...
(tidx = abs (fa) <= 1e3*abs (fb) & abs (fb) <= 1e3*abs (fa));
c(idx) = u(idx) - (a(idx) - b(idx)) ./ (fa(idx) - fb(idx)) .* fu(idx);
## Bisection step.
idx = type1idx & ! tidx;
c(idx) = 0.5*(a(idx) + b(idx));
d(type1idx) = u(type1idx); fd(type1idx) = fu(type1idx);
itype(type1idx) = 5;
## itype == 2 or 3
type23idx = not_ready & ! exclidx & (itype == 2 | itype == 3);
exclidx |= type23idx;
uidx = cellfun (@ (x) length (unique (x)), ...
num2cell ([fa, fb, fd, fe], 2)) == 4;
oidx = sign (c - a) .* sign (c - b) > 0;
## Inverse cubic interpolation.
idx = type23idx & (uidx & ! oidx);
q11 = (d(idx) - e(idx)) .* fd(idx) ./ (fe(idx) - fd(idx));
q21 = (b(idx) - d(idx)) .* fb(idx) ./ (fd(idx) - fb(idx));
q31 = (a(idx) - b(idx)) .* fa(idx) ./ (fb(idx) - fa(idx));
d21 = (b(idx) - d(idx)) .* fd(idx) ./ (fd(idx) - fb(idx));
d31 = (a(idx) - b(idx)) .* fb(idx) ./ (fb(idx) - fa(idx));
q22 = (d21 - q11) .* fb(idx) ./ (fe(idx) - fb(idx));
q32 = (d31 - q21) .* fa(idx) ./ (fd(idx) - fa(idx));
d32 = (d31 - q21) .* fd(idx) ./ (fd(idx) - fa(idx));
q33 = (d32 - q22) .* fa(idx) ./ (fe(idx) - fa(idx));
c(idx) = a(idx) + q31 + q32 + q33;
## Quadratic interpolation + newton.
idx = type23idx & (oidx | ! uidx);
a0 = fa(idx);
a1 = (fb(idx) - fa(idx))./(b(idx) - a(idx));
a2 = ((fd(idx) - fb(idx))./(d(idx) - b(idx)) - a1) ./ (d(idx) - a(idx));
## Modification 1: this is simpler and does not seem to be worse.
c(idx) = a(idx) - a0./a1;
taidx = a2 != 0;
tidx = idx;
tidx(tidx) = taidx;
c(tidx) = a(tidx)(:) - (a0(taidx)./a1(taidx))(:);
for i = 1:3
tidx &= i <= itype;
taidx = tidx(idx);
pc = a0(taidx)(:) + (a1(taidx)(:) + ...
a2(taidx)(:).*(c(tidx) - b(tidx))(:)) ...
.*(c(tidx) - a(tidx))(:);
pdc = a1(taidx)(:) + a2(taidx)(:).*(2*c(tidx) - a(tidx) - b(tidx))(:);
tidx0 = tidx;
tidx0(tidx0, 1) &= (p0idx = pdc == 0);
taidx0 = tidx0(idx);
tidx(tidx, 1) &= ! p0idx;
c(tidx0) = a(tidx0)(:) - (a0(taidx0)./a1(taidx0))(:);
c(tidx) = c(tidx)(:) - (pc(! p0idx)./pdc(! p0idx))(:);
endfor
itype(type23idx) += 1;
## itype == 4
type4idx = not_ready & ! exclidx & itype == 4;
exclidx |= type4idx;
## Double secant step.
idx = type4idx;
c(idx) = u(idx) - 2*(b(idx) - a(idx))./(fb(idx) - fa(idx)).*fu(idx);
## Bisect if too far.
idx = type4idx & abs (c - u) > 0.5*(b - a);
c(idx) = 0.5 * (b(idx) + a(idx));
itype(type4idx) = 5;
## itype == 5
type5idx = not_ready & ! exclidx & itype == 5;
## Bisection step.
idx = type5idx;
c(idx) = 0.5 * (b(idx) + a(idx));
itype(type5idx) = 2;
## Don't let c come too close to a or b.
delta = 2*0.7*(2 * eps * abs (u) + tolx);
nidx = not_ready & ! (idx = b - a <= 2*delta);
idx &= not_ready;
c(idx) = (a(idx) + b(idx))/2;
c(nidx) = max (a(nidx) + delta(nidx), ...
min (b(nidx) - delta(nidx), c(nidx)));
## Calculate new point.
idx = not_ready;
x(idx, 1) = c(idx, 1);
if (any (idx))
c(! idx) = u(! idx); # to have some working place-holders since
# fun() might expect full-length
# argument
fval(idx, 1) = fc(idx, 1) = fun (c)(:)(idx, 1);
niter ++; nfev ++;
endif
## Modification 2: skip inverse cubic interpolation if
## nonmonotonicity is detected.
nidx = not_ready & ! (idx = sign (fc - fa) .* sign (fc - fb) >= 0);
idx &= not_ready;
## The new point broke monotonicity.
## Disable inverse cubic.
fe(idx) = fc(idx);
##
e(nidx) = d(nidx); fe(nidx) = fd(nidx);
## Bracketing.
idx1 = not_ready & sign (fa) .* sign (fc) < 0;
idx2 = not_ready & ! idx1 & sign (fb) .* sign (fc) < 0;
idx3 = not_ready & ! (idx1 | idx2) & fc == 0;
d(idx1) = b(idx1); fd(idx1) = fb(idx1);
b(idx1) = c(idx1); fb(idx1) = fc(idx1);
d(idx2) = a(idx2); fd(idx2) = fa(idx2);
a(idx2) = c(idx2); fa(idx2) = fc(idx2);
a(idx3) = b(idx3) = c(idx3); fa(idx3) = fb(idx3) = fc(idx3);
info(idx3) = 1;
not_ready(idx3) = false;
if (any (not_ready & ! (idx1 | idx2 | idx3)))
## This should never happen.
error ("fzero:bracket", "vfzero: zero point is not bracketed");
endif
## If there's an output function, use it now.
if (! isempty (outfcn))
optv.funccount = nfev;
optv.fval = fval;
optv.iteration = niter;
idx = not_ready & outfcn (x, optv, "iter");
info(idx) = -1;
not_ready(idx) = false;
endif
nidx = not_ready & ! (idx = abs (fa) < abs (fb));
idx &= not_ready;
u(idx) = a(idx); fu(idx) = fa(idx);
u(nidx) = b(nidx); fu(nidx) = fb(nidx);
idx = not_ready & b - a <= 2*(2 * eps * abs (u) + tolx);
info(idx) = 1;
not_ready(idx) = false;
## Skip bisection step if successful reduction.
itype(not_ready & itype == 5 & (b - a) <= mba) = 2;
idx = not_ready & itype == 2;
mba(idx) = mu * (b(idx) - a(idx));
endwhile
## Check solution for a singularity by examining slope
idx = not_ready & info == 1 & (b - a) != 0;
idx(idx, 1) &= ...
abs ((fb(idx, 1) - fa(idx, 1))./(b(idx, 1) - a(idx, 1)) ...
./ slope0(idx, 1)) > max (1e6, 0.5/(eps+tolx));
info(idx) = - 5;
output.iterations = niter;
output.funcCount = nfev;
output.bracketx = [a, b];
output.brackety = [fa, fb];
endfunction
## An assistant function that evaluates a function handle and checks for
## bad results.
function fx = guarded_eval (fun, x)
fx = fun (x);
if (! isreal (fx))
error ("fzero:notreal", "vfzero: non-real value encountered");
elseif (any (isnan (fx)))
error ("fzero:isnan", "vfzero: NaN value encountered");
endif
endfunction
%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert(vfzero(@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert(vfzero(@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)
|