/usr/share/octave/packages/signal-1.2.2/butter.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | ## Copyright (C) 1999 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2003 Doug Stewart <dastew@sympatico.ca>
## Copyright (C) 2011 Alexander Klein <alexander.klein@math.uni-giessen.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## Generate a butterworth filter.
## Default is a discrete space (Z) filter.
##
## [b,a] = butter(n, Wc)
## low pass filter with cutoff pi*Wc radians
##
## [b,a] = butter(n, Wc, 'high')
## high pass filter with cutoff pi*Wc radians
##
## [b,a] = butter(n, [Wl, Wh])
## band pass filter with edges pi*Wl and pi*Wh radians
##
## [b,a] = butter(n, [Wl, Wh], 'stop')
## band reject filter with edges pi*Wl and pi*Wh radians
##
## [z,p,g] = butter(...)
## return filter as zero-pole-gain rather than coefficients of the
## numerator and denominator polynomials.
##
## [...] = butter(...,'s')
## return a Laplace space filter, W can be larger than 1.
##
## [a,b,c,d] = butter(...)
## return state-space matrices
##
## References:
##
## Proakis & Manolakis (1992). Digital Signal Processing. New York:
## Macmillan Publishing Company.
function [a, b, c, d] = butter (n, W, varargin)
if (nargin>4 || nargin<2) || (nargout>4 || nargout<2)
print_usage;
end
## interpret the input parameters
if (!(length(n)==1 && n == round(n) && n > 0))
error ("butter: filter order n must be a positive integer");
end
stop = 0;
digital = 1;
for i=1:length(varargin)
switch varargin{i}
case 's', digital = 0;
case 'z', digital = 1;
case { 'high', 'stop' }, stop = 1;
case { 'low', 'pass' }, stop = 0;
otherwise, error ("butter: expected [high|stop] or [s|z]");
endswitch
endfor
[r, c]=size(W);
if (!(length(W)<=2 && (r==1 || c==1)))
error ("butter: frequency must be given as w0 or [w0, w1]");
elseif (!(length(W)==1 || length(W) == 2))
error ("butter: only one filter band allowed");
elseif (length(W)==2 && !(W(1) < W(2)))
error ("butter: first band edge must be smaller than second");
endif
if ( digital && !all(W >= 0 & W <= 1))
error ("butter: critical frequencies must be in (0 1)");
elseif ( !digital && !all(W >= 0 ))
error ("butter: critical frequencies must be in (0 inf)");
endif
## Prewarp to the band edges to s plane
if digital
T = 2; # sampling frequency of 2 Hz
W = 2/T*tan(pi*W/T);
endif
## Generate splane poles for the prototype butterworth filter
## source: Kuc
C = 1; # default cutoff frequency
pole = C*exp(1i*pi*(2*[1:n] + n - 1)/(2*n));
if mod(n,2) == 1, pole((n+1)/2) = -1; end # pure real value at exp(i*pi)
zero = [];
gain = C^n;
## splane frequency transform
[zero, pole, gain] = sftrans(zero, pole, gain, W, stop);
## Use bilinear transform to convert poles to the z plane
if digital
[zero, pole, gain] = bilinear(zero, pole, gain, T);
endif
## convert to the correct output form
if nargout==2,
a = real(gain*poly(zero));
b = real(poly(pole));
elseif nargout==3,
a = zero;
b = pole;
c = gain;
else
## output ss results
[a, b, c, d] = zp2ss (zero, pole, gain);
endif
endfunction
%!shared sf, sf2, off_db
%! off_db = 0.5;
%! ##Sampling frequency must be that high to make the low pass filters pass.
%! sf = 6000; sf2 = sf/2;
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%!test
%! ##Test low pass order 1 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 1, 50 / sf2 );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 6 0 0 -3 ], off_db )
%!test
%! ##Test low pass order 4 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 4, 50 / sf2 );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 24 0 0 -3 ], off_db )
%!test
%! ##Test high pass order 1 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 1, 50 / sf2, "high" );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 6 -3 0 0 ], off_db )
%!test
%! ##Test high pass order 4 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 4, 50 / sf2, "high" );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 24 -3 0 0 ], off_db )
%!demo
%! sf = 800; sf2 = sf/2;
%! data=[[1;zeros(sf-1,1)],sinetone(25,sf,1,1),sinetone(50,sf,1,1),sinetone(100,sf,1,1)];
%! [b,a]=butter ( 1, 50 / sf2 );
%! filtered = filter(b,a,data);
%!
%! clf
%! subplot ( columns ( filtered ), 1, 1)
%! plot(filtered(:,1),";Impulse response;")
%! subplot ( columns ( filtered ), 1, 2 )
%! plot(filtered(:,2),";25Hz response;")
%! subplot ( columns ( filtered ), 1, 3 )
%! plot(filtered(:,3),";50Hz response;")
%! subplot ( columns ( filtered ), 1, 4 )
%! plot(filtered(:,4),";100Hz response;")
|