/usr/share/octave/packages/signal-1.2.2/chebwin.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | ## Copyright (C) 2002 André Carezia <acarezia@uol.com.br>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## Usage: chebwin (L, at)
##
## Returns the filter coefficients of the L-point Dolph-Chebyshev window
## with at dB of attenuation in the stop-band of the corresponding
## Fourier transform. The default attenuation value is 100 dB.
##
## For the definition of the Chebyshev window, see
##
## * Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter",
## Monthly Weather Review, Vol. 125, pp. 655-660, April 1997.
## (http://www.maths.tcd.ie/~plynch/Publications/Dolph.pdf)
##
## * C. Dolph, "A current distribution for broadside arrays which
## optimizes the relationship between beam width and side-lobe level",
## Proc. IEEE, 34, pp. 335-348.
##
## The window is described in frequency domain by the expression:
##
## Cheb(L-1, beta * cos(pi * k/L))
## W(k) = -------------------------------
## Cheb(L-1, beta)
##
## with
##
## beta = cosh(1/(L-1) * acosh(10^(at/20))
##
## and Cheb(m,x) denoting the m-th order Chebyshev polynomial calculated
## at the point x.
##
## Note that the denominator in W(k) above is not computed, and after
## the inverse Fourier transform the window is scaled by making its
## maximum value unitary.
##
## See also: kaiser
function w = chebwin (L, at)
if (nargin < 1 || nargin > 2)
print_usage;
elseif (nargin == 1)
at = 100;
endif
if !(isscalar (L) && (L == round(L)) && (L > 0))
error ("chebwin: L has to be a positive integer");
elseif !(isscalar (at) && (at == real (at)))
error ("chebwin: at has to be a real scalar");
endif
if (L == 1)
w = 1;
else
# beta calculation
gamma = 10^(-at/20);
beta = cosh(1/(L-1) * acosh(1/gamma));
# freq. scale
k = (0:L-1);
x = beta*cos(pi*k/L);
# Chebyshev window (freq. domain)
p = cheb(L-1, x);
# inverse Fourier transform
if (rem(L,2))
w = real(fft(p));
M = (L+1)/2;
w = w(1:M)/w(1);
w = [w(M:-1:2) w]';
else
# half-sample delay (even order)
p = p.*exp(j*pi/L * (0:L-1));
w = real(fft(p));
M = L/2+1;
w = w/w(2);
w = [w(M:-1:2) w(2:M)]';
endif
endif
w = w ./ max (w (:));
endfunction
|