/usr/share/octave/packages/signal-1.2.2/findpeaks.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | ## Copyright (c) 2012 Juan Pablo Carbajal <carbajal@ifi.uzh.ch>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{pks} @var{loc} @var{extra}] =} findpeaks (@var{data})
## @deftypefnx {Function File} {@dots{} =} findpeaks (@dots{}, @var{property}, @var{value})
## @deftypefnx {Function File} {@dots{} =} findpeaks (@dots{}, @asis{"DoubleSided"})
## Finds peaks on @var{data}.
##
## Peaks of a positive array of data are defined as local maxima. For
## double-sided data, they are maxima of the positive part and minima of
## the negative part. @var{data} is expected to be a single column
## vector.
##
## The function returns the value of @var{data} at the peaks in
## @var{pks}. The index indicating their position is returned in
## @var{loc}.
##
## The third output argument is a structure with additional information:
##
## @table @asis
## @item "parabol"
## A structure containing the parabola fitted to each returned peak. The
## structure has two fields, @asis{"x"} and @asis{"pp"}. The field
## @asis{"pp"} contains the coefficients of the 2nd degree polynomial
## and @asis{"x"} the extrema of the intercal here it was fitted.
##
## @item "height"
## The estimated height of the returned peaks (in units of @var{data}).
##
## @item "baseline"
## The height at which the roots of the returned peaks were calculated
## (in units of @var{data}).
##
## @item "roots"
## The abscissa values (in index units) at which the parabola fitted to
## each of the returned peaks crosses the @asis{"baseline"} value. The
## width of the peak is calculated by @command{diff(roots)}.
## @end table
##
## This function accepts property-value pair given in the list below:
##
## @table @asis
## @item "MinPeakHeight"
## Minimum peak height (positive scalar). Only peaks that exceed this
## value will be returned. For data taking positive and negative values
## use the option "DoubleSided". Default value @code{2*std (abs (detrend
## (data,0)))}.
##
## @item "MinPeakDistance"
## Minimum separation between (positive integer). Peaks separated by
## less than this distance are considered a single peak. This distance
## is also used to fit a second order polynomial to the peaks to
## estimate their width, therefore it acts as a smoothing parameter.
## Default value 4.
##
## @item "MinPeakWidth"
## Minimum width of peaks (positive integer). The width of the peaks is
## estimated using a parabola fitted to the neighborhood of each peak.
## The neighborhood size is equal to the value of
## @asis{"MinPeakDistance"}. The width is evaluated at the half height
## of the peak with baseline at "MinPeakHeight". Default value 2.
##
## @item "DoubleSided"
## Tells the function that data takes positive and negative values. The
## base-line for the peaks is taken as the mean value of the function.
## This is equivalent as passing the absolute value of the data after
## removing the mean.
## @end table
##
## Run @command{demo findpeaks} to see some examples.
## @end deftypefn
function [pks idx varargout] = findpeaks (data, varargin)
# --- Parse arguments --- #
__data__ = abs (detrend (data,0));
posscal = @(x)isscalar (x) && x >= 0;
parser = inputParser ();
parser.FunctionName = "findpeaks";
parser = addParamValue (parser,"MinPeakHeight", 2*std (__data__),posscal);
parser = addParamValue (parser,"MinPeakDistance",4,posscal);
parser = addParamValue (parser,"MinPeakWidth",2,posscal);
parser = addSwitch (parser,"DoubleSided");
parser = parse(parser,varargin{:});
minH = parser.Results.MinPeakHeight;
minD = parser.Results.MinPeakDistance;
minW = parser.Results.MinPeakWidth;
dSided = parser.Results.DoubleSided;
clear parser posscal
# ------ #
if dSided
[data __data__] = deal (__data__, data);
elseif min(data)<0
error ("findpeaks:InvalidArgument",
'Data contains negative values. You may want to "DoubleSided" option');
end
% Rough stimates of first and second derivative
df1 = diff (data,1)([1; (1:end)']);
df2 = diff (data,2)([1; 1; (1:end)']);
% check for changes of sign of 1st derivative and negativity of 2nd
% derivative.
idx = find (df1.*circshift(df1,1)<0 & df2<0)-1;
% Get peaks that are beyond given height
tf = data(idx) > minH;
idx = idx(tf);
% sort according to magnitude
[~,tmp] = sort(data(idx),"descend");
idx_s = idx(tmp);
% Treat peaks separated less than minD as one
D = abs (idx_s - idx_s');
if any(D(:) < minD)
i = 1;
peak = cell ();
node2visit = 1:size(D,1);
visited = [];
idx_pruned = idx_s;
%% debug
## h = plot(1:length(data),data,"-",idx_s,data(idx_s),'.r',idx_s,data(idx_s),'.g');
## set(h(3),"visible","off");
while ~isempty (node2visit)
d = D(node2visit(1),:);
visited = [visited node2visit(1)];
node2visit(1) = [];
neighs = setdiff (find (d < minD), visited);
if ~isempty (neighs)
%% debug
## set(h(3),"xdata",idx_s(neighs),"ydata",data(idx_s(neighs)),"visible","on")
## pause(0.2)
## set(h(3),"visible","off");
idx_pruned = setdiff (idx_pruned,idx_s(neighs));
visited = [visited neighs];
node2visit = setdiff (node2visit,visited);
%% debug
## set(h(2),"xdata",idx_pruned,"ydata",data(idx_pruned))
## pause
end
endwhile
idx = idx_pruned;
end
% Estimate widths of peaks and filter for:
% width smaller than given.
% wrong concavity.
% not high enough
% data at peak is lower than parabola by 1%
if minW > 0
%% debug
# h = plot(1:length(data),data,"-",idx,data(idx),'.r',...
# idx,data(idx),'og',idx,data(idx),'-m');
# set(h(4),"linewidth",2)
# set(h(3:4),"visible","off");
idx_pruned = idx;
n = length(idx);
np = length(data);
struct_count = 0;
for i=1:n
ind = (round (max(idx(i)-minD/2,1)) : ...
round (min(idx(i)+minD/2,np)))';
pp = polyfit (ind,data(ind),2);
H = pp(3) - pp(2)^2/(4*pp(1));
%% debug
# x = linspace(ind(1)-1,ind(end)+1,10);
# set(h(4),"xdata",x,"ydata",polyval(pp,x),"visible","on")
# set(h(3),"xdata",ind,"ydata",data(ind),"visible","on")
# pause(0.2)
# set(h(3:4),"visible","off");
rz = roots ([pp(1:2) pp(3)-mean([H,minH])]);
width = abs (diff (rz));
if width < minW || pp(1) > 0 || H < minH || data(idx(i)) < 0.99*H
idx_pruned = setdiff (idx_pruned, idx(i));
elseif nargout >= 1
struct_count++;
extra.parabol(struct_count).x = ind([1 end]);
extra.parabol(struct_count).pp = pp;
extra.roots(struct_count,1:2) = rz;
extra.height(struct_count) = H;
extra.baseline(struct_count) = mean([H,minH]);
end
%% debug
# set(h(2),"xdata",idx_pruned,"ydata",data(idx_pruned))
# pause(0.2)
end
end
idx = idx_pruned;
if dSided
pks = __data__(idx);
else
pks = data(idx);
end
if nargout >=1
varargout{1} = extra;
end
endfunction
%!demo
%! t = 2*pi*linspace(0,1,1024)';
%! y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3);
%!
%! data1 = abs(y); % Positive values
%! [pks idx] = findpeaks(data1);
%!
%! data2 = y; % Double-sided
%! [pks2 idx2] = findpeaks(data2,"DoubleSided");
%! [pks3 idx3] = findpeaks(data2,"DoubleSided","MinPeakHeight",0.5);
%!
%! subplot(1,2,1)
%! plot(t,data1,t(idx),data1(idx),'.m')
%! subplot(1,2,2)
%! plot(t,data2,t(idx2),data2(idx2),".m;>2*std;",t(idx3),data2(idx3),"or;>0.1;")
%! legend("Location","NorthOutside","Orientation","horizontal")
%!
%! #----------------------------------------------------------------------------
%! # Finding the peaks of smooth data is not a big deal!
%!demo
%! t = 2*pi*linspace(0,1,1024)';
%! y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3);
%!
%! data = abs(y + 0.1*randn(length(y),1)); % Positive values + noise
%! [pks idx] = findpeaks(data,"MinPeakHeight",1);
%!
%! dt = t(2)-t(1);
%! [pks2 idx2] = findpeaks(data,"MinPeakHeight",1,...
%! "MinPeakDistance",round(0.5/dt));
%!
%! subplot(1,2,1)
%! plot(t,data,t(idx),data(idx),'.r')
%! subplot(1,2,2)
%! plot(t,data,t(idx2),data(idx2),'.r')
%!
%! #----------------------------------------------------------------------------
%! # Noisy data may need tunning of the parameters. In the 2nd example,
%! # MinPeakDistance is used as a smoother of the peaks.
|