This file is indexed.

/usr/share/octave/packages/signal-1.2.2/findpeaks.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
## Copyright (c) 2012 Juan Pablo Carbajal <carbajal@ifi.uzh.ch>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{pks} @var{loc} @var{extra}] =} findpeaks (@var{data})
## @deftypefnx {Function File} {@dots{} =} findpeaks (@dots{}, @var{property}, @var{value})
## @deftypefnx {Function File} {@dots{} =} findpeaks (@dots{}, @asis{"DoubleSided"})
## Finds peaks on @var{data}.
##
## Peaks of a positive array of data are defined as local maxima. For
## double-sided data, they are maxima of the positive part and minima of
## the negative part. @var{data} is expected to be a single column
## vector.
##
## The function returns the value of @var{data} at the peaks in
## @var{pks}. The index indicating their position is returned in
## @var{loc}.
##
## The third output argument is a structure with additional information:
##
## @table @asis
## @item "parabol"
## A structure containing the parabola fitted to each returned peak. The
## structure has two fields, @asis{"x"} and @asis{"pp"}. The field
## @asis{"pp"} contains the coefficients of the 2nd degree polynomial
## and @asis{"x"} the extrema of the intercal here it was fitted.
##
## @item "height"
## The estimated height of the returned peaks (in units of @var{data}).
##
## @item "baseline"
## The height at which the roots of the returned peaks were calculated
## (in units of @var{data}).
##
## @item "roots"
## The abscissa values (in index units) at which the parabola fitted to
## each of the returned peaks crosses the @asis{"baseline"} value. The
## width of the peak is calculated by @command{diff(roots)}.
## @end table
##
## This function accepts property-value pair given in the list below:
##
## @table @asis
## @item "MinPeakHeight"
## Minimum peak height (positive scalar). Only peaks that exceed this
## value will be returned. For data taking positive and negative values
## use the option "DoubleSided". Default value @code{2*std (abs (detrend
## (data,0)))}.
##
## @item "MinPeakDistance"
## Minimum separation between (positive integer). Peaks separated by
## less than this distance are considered a single peak. This distance
## is also used to fit a second order polynomial to the peaks to
## estimate their width, therefore it acts as a smoothing parameter.
## Default value 4.
##
## @item "MinPeakWidth"
## Minimum width of peaks (positive integer). The width of the peaks is
## estimated using a parabola fitted to the neighborhood of each peak.
## The neighborhood size is equal to the value of
## @asis{"MinPeakDistance"}. The width is evaluated at the half height
## of the peak with baseline at "MinPeakHeight". Default value 2.
##
## @item "DoubleSided"
## Tells the function that data takes positive and negative values. The
## base-line for the peaks is taken as the mean value of the function.
## This is equivalent as passing the absolute value of the data after
## removing the mean.
## @end table
##
## Run @command{demo findpeaks} to see some examples.
## @end deftypefn

function [pks idx varargout] = findpeaks (data, varargin)

  # --- Parse arguments --- #
  __data__ = abs (detrend (data,0));

  posscal = @(x)isscalar (x) && x >= 0;

  parser = inputParser ();
  parser.FunctionName = "findpeaks";
  parser = addParamValue (parser,"MinPeakHeight", 2*std (__data__),posscal);
  parser = addParamValue (parser,"MinPeakDistance",4,posscal);
  parser = addParamValue (parser,"MinPeakWidth",2,posscal);
  parser = addSwitch (parser,"DoubleSided");

  parser = parse(parser,varargin{:});

  minH      = parser.Results.MinPeakHeight;
  minD      = parser.Results.MinPeakDistance;
  minW      = parser.Results.MinPeakWidth;
  dSided    = parser.Results.DoubleSided;

  clear parser posscal
  # ------ #

  if dSided
    [data __data__] = deal (__data__, data);
  elseif min(data)<0
    error ("findpeaks:InvalidArgument",
    'Data contains negative values. You may want to "DoubleSided" option');
  end

  % Rough stimates of first and second derivative
  df1 = diff (data,1)([1; (1:end)']);
  df2 = diff (data,2)([1; 1; (1:end)']);

  % check for changes of sign of 1st derivative and negativity of 2nd
  % derivative.
  idx = find (df1.*circshift(df1,1)<0 & df2<0)-1;

  % Get peaks that are beyond given height
  tf  = data(idx) > minH;
  idx = idx(tf);

  % sort according to magnitude
  [~,tmp] = sort(data(idx),"descend");
  idx_s = idx(tmp);

  % Treat peaks separated less than minD as one
  D = abs (idx_s - idx_s');
  if any(D(:) < minD)

    i = 1;
    peak = cell ();
    node2visit = 1:size(D,1);
    visited = [];
    idx_pruned = idx_s;

    %% debug
##    h = plot(1:length(data),data,"-",idx_s,data(idx_s),'.r',idx_s,data(idx_s),'.g');
##    set(h(3),"visible","off");

    while ~isempty (node2visit)

      d = D(node2visit(1),:);

      visited = [visited node2visit(1)];
      node2visit(1) = [];

      neighs  = setdiff (find (d < minD), visited);
      if ~isempty (neighs)
        %% debug
##        set(h(3),"xdata",idx_s(neighs),"ydata",data(idx_s(neighs)),"visible","on")
##        pause(0.2)
##        set(h(3),"visible","off");

        idx_pruned   = setdiff (idx_pruned,idx_s(neighs));

        visited    = [visited neighs];
        node2visit = setdiff (node2visit,visited);

        %% debug
##        set(h(2),"xdata",idx_pruned,"ydata",data(idx_pruned))
##        pause
      end

    endwhile
    idx = idx_pruned;
  end

  % Estimate widths of peaks and filter for:
  % width smaller than given.
  % wrong concavity.
  % not high enough
  % data at peak is lower than parabola by 1%
  if minW > 0
    %% debug
#    h = plot(1:length(data),data,"-",idx,data(idx),'.r',...
#          idx,data(idx),'og',idx,data(idx),'-m');
#    set(h(4),"linewidth",2)
#    set(h(3:4),"visible","off");

    idx_pruned = idx;
    n  = length(idx);
    np = length(data);
    struct_count = 0;
    for i=1:n
      ind = (round (max(idx(i)-minD/2,1)) : ...
             round (min(idx(i)+minD/2,np)))';
      pp = polyfit (ind,data(ind),2);
      H  = pp(3) - pp(2)^2/(4*pp(1));

      %% debug
#      x = linspace(ind(1)-1,ind(end)+1,10);
#      set(h(4),"xdata",x,"ydata",polyval(pp,x),"visible","on")
#      set(h(3),"xdata",ind,"ydata",data(ind),"visible","on")
#      pause(0.2)
#      set(h(3:4),"visible","off");

      rz = roots ([pp(1:2) pp(3)-mean([H,minH])]);
      width = abs (diff (rz));
      if width < minW || pp(1) > 0 || H < minH || data(idx(i)) < 0.99*H
          idx_pruned = setdiff (idx_pruned, idx(i));
      elseif nargout >= 1
        struct_count++;
        extra.parabol(struct_count).x  = ind([1 end]);
        extra.parabol(struct_count).pp = pp;

        extra.roots(struct_count,1:2)    = rz;
        extra.height(struct_count)   = H;
        extra.baseline(struct_count) = mean([H,minH]);
      end

      %% debug
#      set(h(2),"xdata",idx_pruned,"ydata",data(idx_pruned))
#      pause(0.2)

    end
  end
  idx = idx_pruned;

  if dSided
    pks = __data__(idx);
  else
    pks = data(idx);
  end

  if nargout >=1
    varargout{1} = extra;
  end
endfunction

%!demo
%! t = 2*pi*linspace(0,1,1024)';
%! y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3);
%!
%! data1 = abs(y); % Positive values
%! [pks idx] = findpeaks(data1);
%!
%! data2 = y; % Double-sided
%! [pks2 idx2] = findpeaks(data2,"DoubleSided");
%! [pks3 idx3] = findpeaks(data2,"DoubleSided","MinPeakHeight",0.5);
%!
%! subplot(1,2,1)
%! plot(t,data1,t(idx),data1(idx),'.m')
%! subplot(1,2,2)
%! plot(t,data2,t(idx2),data2(idx2),".m;>2*std;",t(idx3),data2(idx3),"or;>0.1;")
%! legend("Location","NorthOutside","Orientation","horizontal")
%!
%! #----------------------------------------------------------------------------
%! # Finding the peaks of smooth data is not a big deal!

%!demo
%! t = 2*pi*linspace(0,1,1024)';
%! y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3);
%!
%! data = abs(y + 0.1*randn(length(y),1)); % Positive values + noise
%! [pks idx] = findpeaks(data,"MinPeakHeight",1);
%!
%! dt = t(2)-t(1);
%! [pks2 idx2] = findpeaks(data,"MinPeakHeight",1,...
%!                              "MinPeakDistance",round(0.5/dt));
%!
%! subplot(1,2,1)
%! plot(t,data,t(idx),data(idx),'.r')
%! subplot(1,2,2)
%! plot(t,data,t(idx2),data(idx2),'.r')
%!
%! #----------------------------------------------------------------------------
%! # Noisy data may need tunning of the parameters. In the 2nd example,
%! # MinPeakDistance is used as a smoother of the peaks.