This file is indexed.

/usr/share/octave/packages/signal-1.2.2/fir2.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: b = fir2(n, f, m [, grid_n [, ramp_n]] [, window])
##
## Produce an FIR filter of order n with arbitrary frequency response,
## returning the n+1 filter coefficients in b.
##
## n: order of the filter (1 less than the length of the filter)
## f: frequency at band edges
##    f is a vector of nondecreasing elements in [0,1]
##    the first element must be 0 and the last element must be 1
##    if elements are identical, it indicates a jump in freq. response
## m: magnitude at band edges
##    m is a vector of length(f)
## grid_n: length of ideal frequency response function
##    defaults to 512, should be a power of 2 bigger than n/2
## ramp_n: transition width for jumps in filter response
##    defaults to grid_n/25; a wider ramp gives wider transitions
##    but has better stopband characteristics.
## window: smoothing window
##    defaults to hamming(n+1) row vector
##    returned filter is the same shape as the smoothing window
##
## To apply the filter, use the return vector b:
##       y=filter(b,1,x);
## Note that plot(f,m) shows target response.
##
## Example:
##   f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0];
##   [h, w] = freqz(fir2(100,f,m));
##   plot(f,m,';target response;',w/pi,abs(h),';filter response;');

function b = fir2(n, f, m, grid_n, ramp_n, window)

  if nargin < 3 || nargin > 6
    print_usage;
  endif

  ## verify frequency and magnitude vectors are reasonable
  t = length(f);
  if t<2 || f(1)!=0 || f(t)!=1 || any(diff(f)<0)
    error ("fir2: frequency must be nondecreasing starting from 0 and ending at 1");
  elseif t != length(m)
    error ("fir2: frequency and magnitude vectors must be the same length");
  ## find the grid spacing and ramp width
  elseif (nargin>4 && length(grid_n)>1) || \
        (nargin>5 && (length(grid_n)>1 || length(ramp_n)>1))
    error ("fir2: grid_n and ramp_n must be integers");
  endif
  if nargin < 4, grid_n=[]; endif
  if nargin < 5, ramp_n=[]; endif

  ## find the window parameter, or default to hamming
  w=[];
  if length(grid_n)>1, w=grid_n; grid_n=[]; endif
  if length(ramp_n)>1, w=ramp_n; ramp_n=[]; endif
  if nargin < 6, window=w; endif
  if isempty(window), window=hamming(n+1); endif
  if !isreal(window) || ischar(window), window=feval(window, n+1); endif
  if length(window) != n+1, error ("fir2: window must be of length n+1"); endif

  ## Default grid size is 512... unless n+1 >= 1024
  if isempty (grid_n)
    if n+1 < 1024
      grid_n = 512;
    else
      grid_n = n+1;
    endif
  endif

  ## ML behavior appears to always round the grid size up to a power of 2
  grid_n = 2 ^ nextpow2 (grid_n);

  ## Error out if the grid size is not big enough for the window
  if 2*grid_n < n+1
    error ("fir2: grid size must be greater than half the filter order");
  endif

  if isempty (ramp_n), ramp_n = fix (grid_n / 25); endif

  ## Apply ramps to discontinuities
  if (ramp_n > 0)
    ## remember original frequency points prior to applying ramps
    basef = f(:); basem = m(:);

    ## separate identical frequencies, but keep the midpoint
    idx = find (diff(f) == 0);
    f(idx) = f(idx) - ramp_n/grid_n/2;
    f(idx+1) = f(idx+1) + ramp_n/grid_n/2;
    f = [f(:);basef(idx)]';

    ## make sure the grid points stay monotonic in [0,1]
    f(f<0) = 0;
    f(f>1) = 1;
    f = unique([f(:);basef(idx)(:)]');

    ## preserve window shape even though f may have changed
    m = interp1(basef, basem, f);

    # axis([-.1 1.1 -.1 1.1])
    # plot(f,m,'-xb;ramped;',basef,basem,'-or;original;'); pause;
  endif

  ## interpolate between grid points
  grid = interp1(f,m,linspace(0,1,grid_n+1)');
  # hold on; plot(linspace(0,1,grid_n+1),grid,'-+g;grid;'); hold off; pause;

  ## Transform frequency response into time response and
  ## center the response about n/2, truncating the excess
  if (rem(n,2) == 0)
    b = ifft([grid ; grid(grid_n:-1:2)]);
    mid = (n+1)/2;
    b = real ([ b([end-floor(mid)+1:end]) ; b(1:ceil(mid)) ]);
  else
    ## Add zeros to interpolate by 2, then pick the odd values below.
    b = ifft([grid ; zeros(grid_n*2,1) ;grid(grid_n:-1:2)]);
    b = 2 * real([ b([end-n+1:2:end]) ; b(2:2:(n+1))]);
  endif

  ## Multiplication in the time domain is convolution in frequency,
  ## so multiply by our window now to smooth the frequency response.
  ## Also, for matlab compatibility, we return return values in 1 row
  b = b(:)' .* window(:)';

endfunction

%% Test that the grid size is rounded up to the next power of 2
%!test
%! f = [0 0.6 0.6 1]; m = [1 1 0 0];
%! b9  = fir2 (30, f, m, 9);
%! b16 = fir2 (30, f, m, 16);
%! b17 = fir2 (30, f, m, 17);
%! b32 = fir2 (30, f, m, 32);
%! assert ( isequal (b9,  b16))
%! assert ( isequal (b17, b32))
%! assert (~isequal (b16, b17))

%!demo
%! f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0];
%! [h, w] = freqz(fir2(100,f,m));
%! subplot(121);
%! plot(f,m,';target response;',w/pi,abs(h),';filter response;');
%! subplot(122);
%! plot(f,20*log10(m+1e-5),';target response (dB);',...
%!      w/pi,20*log10(abs(h)),';filter response (dB);');

%!demo
%! f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0];
%! plot(f,20*log10(m+1e-5),';target response;');
%! hold on;
%! [h, w] = freqz(fir2(50,f,m,512,0));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=0);');
%! [h, w] = freqz(fir2(50,f,m,512,25.6));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/20 rad);');
%! [h, w] = freqz(fir2(50,f,m,512,51.2));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/10 rad);');
%! hold off;

%!demo
%! % Classical Jakes spectrum
%! % X represents the normalized frequency from 0
%! % to the maximum Doppler frequency
%! asymptote = 2/3;
%! X = linspace(0,asymptote-0.0001,200);
%! Y = (1 - (X./asymptote).^2).^(-1/4);
%!
%! % The target frequency response is 0 after the asymptote
%! X = [X, asymptote, 1];
%! Y = [Y, 0, 0];
%!
%! title('Theoretical/Synthesized CLASS spectrum');
%! xlabel('Normalized frequency (Fs=2)');
%! ylabel('Magnitude');
%!
%! plot(X,Y,'b;Target spectrum;');
%! hold on;
%! [H,F]=freqz(fir2(20, X, Y));
%! plot(F/pi,abs(H),'c;Synthesized spectrum (n=20);');
%! [H,F]=freqz(fir2(50, X, Y));
%! plot(F/pi,abs(H),'r;Synthesized spectrum (n=50);');
%! [H,F]=freqz(fir2(200, X, Y));
%! plot(F/pi,abs(H),'g;Synthesized spectrum (n=200);');
%! hold off;
%! xlabel(''); ylabel(''); title('');