/usr/share/octave/packages/signal-1.2.2/fwhm.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | %% Author: Petr Mikulik (2009)
%% This program is granted to the public domain.
%% Compute peak full-width at half maximum (FWHM) or at another level of peak
%% maximum for vector or matrix data y, optionally sampled as y(x). If y is
%% a matrix, return FWHM for each column as a row vector.
%% Syntax:
%% f = fwhm({x, } y {, 'zero'|'min' {, 'rlevel', rlevel}})
%% f = fwhm({x, } y {, 'alevel', alevel})
%% Examples:
%% f = fwhm(y)
%% f = fwhm(x, y)
%% f = fwhm(x, y, 'zero')
%% f = fwhm(x, y, 'min')
%% f = fwhm(x, y, 'alevel', 15.3)
%% f = fwhm(x, y, 'zero', 'rlevel', 0.5)
%% f = fwhm(x, y, 'min', 'rlevel', 0.1)
%%
%% The default option 'zero' computes fwhm at half maximum, i.e. 0.5*max(y).
%% The option 'min' computes fwhm at the middle curve, i.e. 0.5*(min(y)+max(y)).
%%
%% The option 'rlevel' computes full-width at the given relative level of peak
%% profile, i.e. at rlevel*max(y) or rlevel*(min(y)+max(y)), respectively.
%% For example, fwhm(..., 'rlevel', 0.1) computes full width at 10 % of peak
%% maximum with respect to zero or minimum; FWHM is equivalent to
%% fwhm(..., 'rlevel', 0.5).
%%
%% The option 'alevel' computes full-width at the given absolute level of y.
%%
%% Return 0 if FWHM does not exist (e.g. monotonous function or the function
%% does not cut horizontal line at rlevel*max(y) or rlevel*(max(y)+min(y)) or
%% alevel, respectively).
%%
%% Compatibility: Octave 3.x, Matlab
function myfwhm = fwhm (y, varargin)
if nargin < 1 || nargin > 5
print_usage;
end
opt = 'zero';
is_alevel = 0;
level = 0.5;
if nargin==1
x = 1:length(y);
else
if ischar(varargin{1})
x = 1:length(y);
k = 1;
else
x = y;
y = varargin{1};
k = 2;
end
while k <= length(varargin)
if strcmp(varargin{k}, 'alevel')
is_alevel = 1;
k = k+1;
if k > length(varargin)
error('option "alevel" requires an argument');
end
level = varargin{k};
if ~isreal(level) || length(level) > 1
error('argument of "alevel" must be real number');
end
k = k+1;
break
end
if any(strcmp(varargin{k}, {'zero', 'min'}))
opt = varargin{k};
k = k+1;
end
if k > length(varargin) break; end
if strcmp(varargin{k}, 'rlevel')
k = k+1;
if k > length(varargin)
error('option "rlevel" requires an argument');
end
level = varargin{k};
if ~isreal(level) || length(level) > 1 || level(1) < 0 || level(:) > 1
error('argument of "rlevel" must be real number from 0 to 1 (it is 0.5 for fwhm)');
end
k = k+1;
break
end
break
end
if k ~= length(varargin)+1
error('fwhm: extraneous option(s)');
end
end
% test the y matrix
[nr, nc] = size(y);
if (nr == 1 && nc > 1)
y = y'; nr = nc; nc = 1;
end
if length(x) ~= nr
error('dimension of input arguments do not match');
end
% Shift matrix columns so that y(+-xfwhm) = 0:
if is_alevel
% case: full-width at the given absolute position
y = y - level;
else
if strcmp(opt, 'zero')
% case: full-width at half maximum
y = y - level * repmat(max(y), nr, 1);
else
% case: full-width above background
y = y - level * repmat((max(y) + min(y)), nr, 1);
end
end
% Trial for a "vectorizing" calculation of fwhm (i.e. all
% columns in one shot):
% myfwhm = zeros(1,nc); % default: 0 for fwhm undefined
% ind = find (y(1:end-1, :) .* y(2:end, :) <= 0);
% [r1,c1] = ind2sub(size(y), ind);
% ... difficult to proceed further.
% Thus calculate fwhm for each column independently:
myfwhm = zeros(1,nc); % default: 0 for fwhm undefined
for n=1:nc
yy = y(:, n);
ind = find((yy(1:end-1) .* yy(2:end)) <= 0);
if length(ind) >= 2 && yy(ind(1)) > 0 % must start ascending
ind = ind(2:end);
end
[mx, imax] = max(yy); % protection against constant or (almost) monotonous functions
if length(ind) >= 2 && imax >= ind(1) && imax <= ind(end)
ind1 = ind(1);
ind2 = ind1 + 1;
xx1 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
ind1 = ind(end);
ind2 = ind1 + 1;
xx2 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
myfwhm(n) = xx2 - xx1;
end
end
end
%!test
%! x=-pi:0.001:pi; y=cos(x);
%! assert( abs(fwhm(x, y) - 2*pi/3) < 0.01 );
%!
%!test
%! assert( fwhm(-10:10) == 0 && fwhm(ones(1,50)) == 0 );
%!
%!test
%! x=-20:1:20;
%! y1=-4+zeros(size(x)); y1(4:10)=8;
%! y2=-2+zeros(size(x)); y2(4:11)=2;
%! y3= 2+zeros(size(x)); y3(5:13)=10;
%! assert( max(abs(fwhm(x, [y1;y2;y3]') - [20.0/3,7.5,9.25])) < 0.01 );
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y)-0.75)<0.001 && abs(fwhm(x,y,'zero')-0.75)<0.001 && abs(fwhm(x,y,'min')-1.0)<0.001);
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'zero', 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'min', 'rlevel', 0.1)-1.40)<0.001);
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'alevel', 2.5)-0.25)<0.001 && abs(fwhm(x,y,'alevel', -0.5)-1.75)<0.001);
%!
%!test
%! x=-10:10; assert( fwhm(x.*x) == 0 );
%!
%!test
%! x=-5:5; y=18-x.*x; assert( abs(fwhm(y)-6.0) < 0.001 && abs(fwhm(x,y,'zero')-6.0) < 0.001 && abs(fwhm(x,y,'min')-7.0 ) < 0.001);
|