This file is indexed.

/usr/share/octave/packages/signal-1.2.2/invfreqs.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
%% Copyright (C) 1986,2003 Julius O. Smith III <jos@ccrma.stanford.edu>
%% Copyright (C) 2003 Andrew Fitting
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.

%% Usage: [B,A] = invfreqs(H,F,nB,nA)
%%        [B,A] = invfreqs(H,F,nB,nA,W)
%%        [B,A] = invfreqs(H,F,nB,nA,W,iter,tol,'trace')
%%
%% Fit filter B(s)/A(s)to the complex frequency response H at frequency
%% points F.  A and B are real polynomial coefficients of order nA and nB.
%% Optionally, the fit-errors can be weighted vs frequency according to
%% the weights W.
%% Note: all the guts are in invfreq.m
%%
%% H: desired complex frequency response
%% F: frequency (must be same length as H)
%% nA: order of the denominator polynomial A
%% nB: order of the numerator polynomial B
%% W: vector of weights (must be same length as F)
%%
%% Example:
%%       B = [1/2 1];
%%       A = [1 1];
%%       w = linspace(0,4,128);
%%       H = freqs(B,A,w);
%%       [Bh,Ah] = invfreqs(H,w,1,1);
%%       Hh = freqs(Bh,Ah,w);
%%       plot(w,[abs(H);abs(Hh)])
%%       legend('Original','Measured');
%%       err = norm(H-Hh);
%%       disp(sprintf('L2 norm of frequency response error = %f',err));

% TODO: check invfreq.m for todo's

function [B, A, SigN] = invfreqs(H,F,nB,nA,W,iter,tol,tr, varargin)

  if nargin < 9
    varargin = {};
    if nargin < 8
      tr = '';
      if nargin < 7
          tol = [];
          if nargin < 6 
              iter = [];
              if nargin < 5
                  W = ones(1,length(F));
              end
          end
      end
    end
  end

  % now for the real work
  [B, A, SigN] = invfreq(H, F,nB, nA, W, iter, tol, tr, 's', varargin{:});
endfunction

%!demo
%! B = [1/2 1];
%! B = [1 0 0];
%! A = [1 1];
%! %#A = [1 36 630 6930 51975 270270 945945 2027025 2027025]/2027025;
%! A = [1 21 210 1260 4725 10395 10395]/10395;
%! A = [1 6 15 15]/15;
%! w = linspace(0, 8, 128);
%! H0 = freqs(B, A, w);
%! Nn = (randn(size(w))+j*randn(size(w)))/sqrt(2);
%! order = length(A) - 1;
%! [Bh, Ah, Sig0] = invfreqs(H0, w, [length(B)-1 2], length(A)-1);
%! Hh = freqs(Bh,Ah,w);
%! [BLS, ALS, SigLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "LS");
%! HLS = freqs(BLS, ALS, w);
%! [BTLS, ATLS, SigTLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "TLS");
%! HTLS = freqs(BTLS, ATLS, w);
%! [BMLS, AMLS, SigMLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "QR");
%! HMLS = freqs(BMLS, AMLS, w);
%! xlabel("Frequency (rad/sec)");
%! ylabel("Magnitude");
%! plot(w,[abs(H0); abs(Hh)])
%! legend('Original','Measured');
%! err = norm(H0-Hh);
%! disp(sprintf('L2 norm of frequency response error = %f',err));