This file is indexed.

/usr/share/octave/packages/signal-1.2.2/ncauer.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
## Copyright (C) 2001 Paulo Neis <p_neis@yahoo.com.br>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: [Zz, Zp, Zg] = ncauer(Rp, Rs, n)
##
## Analog prototype for Cauer filter.
## [z, p, g]=ncauer(Rp, Rs, ws)
## Rp = Passband ripple
## Rs = Stopband ripple
## Ws = Desired order
##
## References: 
##
## - Serra, Celso Penteado, Teoria e Projeto de Filtros, Campinas: CARTGRAF, 
##   1983.
## - Lamar, Marcus Vinicius, Notas de aula da disciplina TE 456 - Circuitos 
##   Analogicos II, UFPR, 2001/2002.

function [zer, pol, T0]=ncauer(Rp, Rs, n)

  ## Cutoff frequency = 1:
  wp=1;

  ## Stop band edge ws:
  ws=__ellip_ws(n, Rp, Rs);

  k=wp/ws;
  k1=sqrt(1-k^2);
  q0=(1/2)*((1-sqrt(k1))/(1+sqrt(k1)));
  q= q0 + 2*q0^5 + 15*q0^9 + 150*q0^13; %(....)
  D=(10^(0.1*Rs)-1)/(10^(0.1*Rp)-1);

  ##Filter order maybe this, but not used now:
  ##n=ceil(log10(16*D)/log10(1/q))

  l=(1/(2*n))*log((10^(0.05*Rp)+1)/(10^(0.05*Rp)-1));
  sig01=0; sig02=0;
  for m=0 : 30
    sig01=sig01+(-1)^m * q^(m*(m+1)) * sinh((2*m+1)*l);
  end
  for m=1 : 30
    sig02=sig02+(-1)^m * q^(m^2) * cosh(2*m*l);
  end
  sig0=abs((2*q^(1/4)*sig01)/(1+2*sig02));

  w=sqrt((1+k*sig0^2)*(1+sig0^2/k));
  #
  if rem(n,2)
    r=(n-1)/2;
  else
    r=n/2;
  end
  #
  wi=zeros(1,r);
  for ii=1 : r
    if rem(n,2)
      mu=ii;
    else
      mu=ii-1/2;
    end
    soma1=0;
    for m=0 : 30
      soma1 = soma1 + 2*q^(1/4) * ((-1)^m * q^(m*(m+1)) * sin(((2*m+1)*pi*mu)/n));
    end
    soma2=0;
    for m=1 : 30
      soma2 = soma2 + 2*((-1)^m * q^(m^2) * cos((2*m*pi*mu)/n));
    end
    wi(ii)=(soma1/(1+soma2));
  end
  #
  Vi=sqrt((1-(k.*(wi.^2))).*(1-(wi.^2)/k));
  A0i=1./(wi.^2);
  sqrA0i=1./(wi);
  B0i=((sig0.*Vi).^2 + (w.*wi).^2)./((1+sig0^2.*wi.^2).^2);
  B1i=(2 * sig0.*Vi)./(1 + sig0^2 * wi.^2);

  ##Gain T0:
  if rem(n,2)
    T0=sig0*prod(B0i./A0i)*sqrt(ws);
  else
    T0=10^(-0.05*Rp)*prod(B0i./A0i);
  end

  ##zeros:
  zer=[i*sqrA0i, -i*sqrA0i];

  ##poles:
  pol=[(-2*sig0*Vi+2*i*wi.*w)./(2*(1+sig0^2*wi.^2)), (-2*sig0*Vi-2*i*wi.*w)./(2*(1+sig0^2*wi.^2))];

  ##If n odd, there is a real pole  -sig0:
  if rem(n,2)
          pol=[pol, -sig0];
  end

  ##
  pol=(sqrt(ws)).*pol;
  zer=(sqrt(ws)).*zer;

endfunction

## usage: ws = __ellip_ws(n, rp, rs)
## Calculate the stop band edge for the Cauer filter.
function ws=__ellip_ws(n, rp, rs)
  kl0 = ((10^(0.1*rp)-1)/(10^(0.1*rs)-1));
  k0  = (1-kl0);
  int = ellipke([kl0 ; k0]);
  ql0 = int(1);
  q0  = int(2);
  x   = n*ql0/q0;
  kl  = fminbnd(@(y) __ellip_ws_min(y,x) ,eps, 1-eps);
  ws  = sqrt(1/kl);
endfunction

## usage: err = __ellip_ws_min(kl, x)
function err=__ellip_ws_min(kl, x)
  int=ellipke([kl; 1-kl]);
  ql=int(1);
  q=int(2);
  err=abs((ql/q)-x);
endfunction