/usr/share/octave/packages/signal-1.2.2/pulstran.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## usage: y=pulstran(t,d,'func',...)
## y=pulstran(t,d,p,Fs,'interp')
##
## Generate the signal y=sum(func(t+d,...)) for each d. If d is a
## matrix of two columns, the first column is the delay d and the second
## column is the amplitude a, and y=sum(a*func(t+d)) for each d,a.
## Clearly, func must be a function which accepts a vector of times.
## Any extra arguments needed for the function must be tagged on the end.
##
## Example
## fs = 11025; # arbitrary sample rate
## f0 = 100; # pulse train sample rate
## w = 0.001; # pulse width of 1 millisecond
## auplot(pulstran(0:1/fs:0.1, 0:1/f0:0.1, 'rectpuls', w), fs);
##
## If instead of a function name you supply a pulse shape sampled at
## frequency Fs (default 1 Hz), an interpolated version of the pulse
## is added at each delay d. The interpolation stays within the the
## time range of the delayed pulse. The interpolation method defaults
## to linear, but it can be any interpolation method accepted by the
## function interp1.
##
## Example
## fs = 11025; # arbitrary sample rate
## f0 = 100; # pulse train sample rate
## w = boxcar(10); # pulse width of 1 millisecond at 10 kHz
## auplot(pulstran(0:1/fs:0.1, 0:1/f0:0.1, w, 10000), fs);
## TODO: Make it faster. It is currently unusable for anything real.
## TODO: It may not be possible to speed it up with the present interface.
## TODO: See speech/voice.m for a better way.
## Note that pulstran can be used for some pretty strange things such
## as simple band-limited interpolation:
## xf = 0:0.05:10; yf = sin(2*pi*xf/5);
## xp = 0:10; yp = sin(2*pi*xp/5); # .2 Hz sine sampled every second
## s = pulstran(xf, [xp, yp],'sinc');
## plot(f, yf, ";original;", xf, s, ";sinc;",xp,yp,"*;;");
## You wouldn't want to do this in practice since it is expensive, and
## since it works much better with a windowed sinc function, at least
## for short samples.
function y = pulstran(t, d, pulse, varargin)
if nargin<3 || (!ischar(pulse) && nargin>5)
print_usage;
endif
y = zeros(size(t));
if isempty(y), return; endif
if rows(d) == 1, d=d'; endif
if columns(d) == 2,
a=d(:,2);
else
a=ones(rows(d),1);
endif
if ischar(pulse)
## apply function t+d for all d
for i=1:rows(d)
y = y+a(i)*feval(pulse,t-d(i,1),varargin{:});
endfor
else
## interpolate each pulse at the specified times
Fs = 1; method = 'linear';
if nargin==4
arg=varargin{1};
if ischar(arg),
method=arg;
else
Fs = arg;
endif
elseif nargin==5
Fs = varargin{1};
method = varargin{2};
endif
span = (length(pulse)-1)/Fs;
t_pulse = (0:length(pulse)-1)/Fs;
for i=1:rows(d)
dt = t-d(i,1);
idx = find(dt>=0 & dt<=span);
y(idx) = y(idx) + a(i)*interp1(t_pulse, pulse, dt(idx), method);
endfor
endif
endfunction
%!error pulstran
%!error pulstran(1,2,3,4,5,6)
%!## parameter size and shape checking
%!shared t,d
%! t = 0:0.01:1; d=0:0.1:1;
%!assert (isempty(pulstran([], d, 'sin')));
%!assert (pulstran(t, [], 'sin'), zeros(size(t)));
%!assert (isempty(pulstran([], d, boxcar(5))));
%!assert (pulstran(t, [], boxcar(5)), zeros(size(t)));
%!assert (size(pulstran(t,d,'sin')), size(t));
%!assert (size(pulstran(t,d','sin')), size(t));
%!assert (size(pulstran(t',d,'sin')), size(t'));
%!assert (size(pulstran(t,d','sin')), size(t));
%!demo
%! fs = 11025; # arbitrary sample rate
%! f0 = 100; # pulse train sample rate
%! w = 0.003; # pulse width of 3 milliseconds
%! t = 0:1/fs:0.1; d=0:1/f0:0.1; # define sample times and pulse times
%! a = hanning(length(d)); # define pulse amplitudes
%!
%! subplot(221); title("rectpuls");
%! auplot(pulstran(t', d', 'rectpuls', w), fs);
%! hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off;
%!
%! subplot(223); title("sinc => band limited interpolation");
%! auplot(pulstran(f0*t, [f0*d', a], 'sinc'), fs);
%! hold on; plot(d*1000,a,'g*;pulse;'); hold off;
%!
%! subplot(222); title("interpolated boxcar");
%! pulse = boxcar(30); # pulse width of 3 ms at 10 kHz
%! auplot(pulstran(t, d', pulse, 10000), fs);
%! hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off;
%!
%! subplot(224); title("interpolated asymmetric sin");
%! pulse = sin(2*pi*[0:0.0001:w]/w).*[w:-0.0001:0];
%! auplot(pulstran(t', [d', a], pulse', 10000), fs);
%! hold on; plot(d*1000,a*w,'g*;pulse;'); hold off; title("");
%!
%! %----------------------------------------------------------
%! % Should see (1) rectangular pulses centered on *,
%! % (2) rectangular pulses to the right of *,
%! % (3) smooth interpolation between the *'s, and
%! % (4) asymetric sines to the right of *
|