/usr/share/octave/packages/signal-1.2.2/pwelch.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | %% Copyright (C) 2006 Peter V. Lanspeary <pvl@mecheng.adelaide.edu.au>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.
%% USAGE:
%% [spectra,freq] = pwelch(x,window,overlap,Nfft,Fs,
%% range,plot_type,detrend,sloppy)
%% Estimate power spectral density of data "x" by the Welch (1967)
%% periodogram/FFT method. All arguments except "x" are optional.
%% The data is divided into segments. If "window" is a vector, each
%% segment has the same length as "window" and is multiplied by "window"
%% before (optional) zero-padding and calculation of its periodogram. If
%% "window" is a scalar, each segment has a length of "window" and a
%% Hamming window is used.
%% The spectral density is the mean of the periodograms, scaled so that
%% area under the spectrum is the same as the mean square of the
%% data. This equivalence is supposed to be exact, but in practice there
%% is a mismatch of up to 0.5% when comparing area under a periodogram
%% with the mean square of the data.
%%
%% [spectra,freq] = pwelch(x,y,window,overlap,Nfft,Fs,
%% range,plot_type,detrend,sloppy,results)
%% Two-channel spectrum analyser. Estimate power spectral density, cross-
%% spectral density, transfer function and/or coherence functions of time-
%% series input data "x" and output data "y" by the Welch (1967)
%% periodogram/FFT method.
%% pwelch treats the second argument as "y" if there is a control-string
%% argument "cross", "trans", "coher" or "ypower"; "power" does not force
%% the 2nd argument to be treated as "y". All other arguments are
%% optional. All spectra are returned in matrix "spectra".
%%
%% [spectra,Pxx_ci,freq] = pwelch(x,window,overlap,Nfft,Fs,conf,
%% range,plot_type,detrend,sloppy)
%% [spectra,Pxx_ci,freq] = pwelch(x,y,window,overlap,Nfft,Fs,conf,
%% range,plot_type,detrend,sloppy,results)
%% Estimates confidence intervals for the spectral density.
%% See Hint (7) below for compatibility options. Confidence level "conf"
%% is the 6th or 7th numeric argument. If "results" control-string
%% arguments are used, one of them must be "power" when the "conf"
%% argument is present; pwelch can estimate confidence intervals only for
%% the power spectrum of the "x" data. It does not know how to estimate
%% confidence intervals of the cross-power spectrum, transfer function or
%% coherence; if you can suggest a good method, please send a bug report.
%%
%% ARGUMENTS
%% All but the first argument are optional and may be empty, except that
%% the "results" argument may require the second argument to be "y".
%%
%% x %% [non-empty vector] system-input time-series data
%% y %% [non-empty vector] system-output time-series data
%%
%% window %% [real vector] of window-function values between 0 and 1; the
%% %% data segment has the same length as the window.
%% %% Default window shape is Hamming.
%% %% [integer scalar] length of each data segment. The default
%% %% value is window=sqrt(length(x)) rounded up to the
%% %% nearest integer power of 2; see 'sloppy' argument.
%%
%% overlap %% [real scalar] segment overlap expressed as a multiple of
%% %% window or segment length. 0 <= overlap < 1,
%% %% The default is overlap=0.5 .
%%
%% Nfft %% [integer scalar] Length of FFT. The default is the length
%% %% of the "window" vector or has the same value as the
%% %% scalar "window" argument. If Nfft is larger than the
%% %% segment length, "seg_len", the data segment is padded
%% %% with "Nfft-seg_len" zeros. The default is no padding.
%% %% Nfft values smaller than the length of the data
%% %% segment (or window) are ignored silently.
%%
%% Fs %% [real scalar] sampling frequency (Hertz); default=1.0
%%
%% conf %% [real scalar] confidence level between 0 and 1. Confidence
%% %% intervals of the spectral density are estimated from
%% %% scatter in the periodograms and are returned as Pxx_ci.
%% %% Pxx_ci(:,1) is the lower bound of the confidence
%% %% interval and Pxx_ci(:,2) is the upper bound. If there
%% %% are three return values, or conf is an empty matrix,
%% %% confidence intervals are calculated for conf=0.95 .
%% %% If conf is zero or is not given, confidence intervals
%% %% are not calculated. Confidence intervals can be
%% %% obtained only for the power spectral density of x;
%% %% nothing else.
%%
%% CONTROL-STRING ARGUMENTS -- each of these arguments is a character string.
%% Control-string arguments must be after the other arguments but can be in
%% any order.
%%
%% range %% 'half', 'onesided' : frequency range of the spectrum is
%% %% zero up to but not including Fs/2. Power from
%% %% negative frequencies is added to the positive side of
%% %% the spectrum, but not at zero or Nyquist (Fs/2)
%% %% frequencies. This keeps power equal in time and
%% %% spectral domains. See reference [2].
%% %% 'whole', 'twosided' : frequency range of the spectrum is
%% %% -Fs/2 to Fs/2, with negative frequencies
%% %% stored in "wrap around" order after the positive
%% %% frequencies; e.g. frequencies for a 10-point 'twosided'
%% %% spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1
%% %% 'shift', 'centerdc' : same as 'whole' but with the first half
%% %% of the spectrum swapped with second half to put the
%% %% zero-frequency value in the middle. (See "help
%% %% fftshift".
%% %% If data (x and y) are real, the default range is 'half',
%% %% otherwise default range is 'whole'.
%%
%% plot_type %% 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':
%% %% specifies the type of plot. The default is 'plot', which
%% %% means linear-linear axes. 'squared' is the same as 'plot'.
%% %% 'dB' plots "10*log10(psd)". This argument is ignored and a
%% %% spectrum is not plotted if the caller requires a returned
%% %% value.
%%
%% detrend %% 'no-strip', 'none' -- do NOT remove mean value from the data
%% %% 'short', 'mean' -- remove the mean value of each segment from
%% %% each segment of the data.
%% %% 'linear', -- remove linear trend from each segment of
%% %% the data.
%% %% 'long-mean' -- remove the mean value from the data before
%% %% splitting it into segments. This is the default.
%%
%% sloppy %% 'sloppy': FFT length is rounded up to the nearest integer
%% %% power of 2 by zero padding. FFT length is adjusted
%% %% after addition of padding by explicit Nfft argument.
%% %% The default is to use exactly the FFT and window/
%% %% segment lengths specified in argument list.
%%
%% results %% specifies what results to return (in the order specified
%% %% and as many as desired).
%% %% 'power' calculate power spectral density of "x"
%% %% 'cross' calculate cross spectral density of "x" and "y"
%% %% 'trans' calculate transfer function of a system with
%% %% input "x" and output "y"
%% %% 'coher' calculate coherence function of "x" and "y"
%% %% 'ypower' calculate power spectral density of "y"
%% %% The default is 'power', with argument "y" omitted.
%%
%% RETURNED VALUES:
%% If return values are not required by the caller, the results are
%% plotted and nothing is returned.
%%
%% spectra %% [real-or-complex matrix] columns of the matrix contain results
%% %% in the same order as specified by "results" arguments.
%% %% Each column contains one of the result vectors.
%%
%% Pxx_ci %% [real matrix] estimate of confidence interval for power
%% %% spectral density of x. First column is the lower
%% %% bound. Second column is the upper bound.
%%
%% freq %% [real column vector] frequency values
%%
%% HINTS
%% 1) EMPTY ARGS:
%% if you don't want to use an optional argument you can leave it empty
%% by writing its value as [].
%% 2) FOR BEGINNERS:
%% The profusion of arguments may make pwelch difficult to use, and an
%% unskilled user can easily produce a meaningless result or can easily
%% mis-interpret the result. With real data "x" and sampling frequency
%% "Fs", the easiest and best way for a beginner to use pwelch is
%% probably "pwelch(x,[],[],[],Fs)". Use the "window" argument to
%% control the length of the spectrum vector. For real data and integer
%% scalar M, "pwelch(x,2*M,[],[],Fs)" gives an M+1 point spectrum.
%% Run "demo pwelch" (octave only).
%% 3) WINDOWING FUNCTIONS:
%% Without a window function, sharp spectral peaks can have strong
%% sidelobes because the FFT of a data in a segment is in effect convolved
%% with a rectangular window. A window function which tapers off
%% (gradually) at the ends produces much weaker sidelobes in the FFT.
%% Hann (hanning), hamming, bartlett, blackman, flattopwin etc are
%% available as separate Matlab/sigproc or Octave functions. The sidelobes
%% of the Hann window have a roll-off rate of 60dB/decade of frequency.
%% The first sidelobe of the Hamming window is suppressed and is about 12dB
%% lower than the first Hann sidelobe, but the roll-off rate is only
%% 20dB/decade. You can inspect the FFT of a Hann window by plotting
%% "abs(fft(postpad(hanning(256),4096,0)))".
%% The default window is Hamming.
%% 4) ZERO PADDING:
%% Zero-padding reduces the frequency step in the
%% spectrum, and produces an artificially smoothed spectrum. For example,
%% "Nfft=2*length(window)" gives twice as many frequency values, but
%% adjacent PSD (power spectral density) values are not independent;
%% adjacent PSD values are independent if "Nfft=length(window)", which is
%% the default value of Nfft.
%% 5) REMOVING MEAN FROM SIGNAL:
%% If the mean is not removed from the signal there is a large spectral
%% peak at zero frequency and the sidelobes of this peak are likely to
%% swamp the rest of the spectrum. For this reason, the default behaviour
%% is to remove the mean. However, the matlab pwelch does not do this.
%% 6) WARNING ON CONFIDENCE INTERVALS
%% Confidence intervals are obtained by measuring the sample variance of
%% the periodograms and assuming that the periodograms have a Gaussian
%% probability distribution. This assumption is not accurate. If, for
%% example, the data (x) is Gaussian, the periodogram has a Rayleigh
%% distribution. However, the confidence intervals may still be useful.
%%
%% 7) COMPATIBILITY WITH Matlab R11, R12, etc
%% When used without the second data (y) argument, arguments are compatible
%% with the pwelch of Matlab R12, R13, R14, 2006a and 2006b except that
%% 1) overlap is expressed as a multiple of window length ---
%% effect of overlap scales with window length
%% 2) default values of length(window), Nfft and Fs are more sensible, and
%% 3) Goertzel algorithm is not available so Nfft cannot be an array of
%% frequencies as in Matlab 2006b.
%% Pwelch has four persistent Matlab-compatibility levels. Calling pwelch
%% with an empty first argument sets the order of arguments and defaults
%% specified above in the USAGE and ARGUMENTS section of this documentation.
%% prev_compat=pwelch([]);
%% [Pxx,f]=pwelch(x,window,overlap,Nfft,Fs,conf,...);
%% Calling pwelch with a single string argument (as described below) gives
%% compatibility with Matlab R11 or R12, or the R14 spectrum.welch
%% defaults. The returned value is the PREVIOUS compatibility string.
%%
%% Matlab R11: For compatibility with the Matlab R11 pwelch:
%% prev_compat=pwelch('R11-');
%% [Pxx,f]=pwelch(x,Nfft,Fs,window,overlap,conf,range,units);
%% %% units of overlap are "number of samples"
%% %% defaults: Nfft=min(length(x),256), Fs=2*pi, length(window)=Nfft,
%% %% window=Hanning, do not detrend,
%% %% N.B. "Sloppy" is not available.
%%
%% Matlab R12: For compatibility with Matlab R12 to 2006a pwelch:
%% prev_compat=pwelch('R12+');
%% [Pxx,f]=pwelch(x,window,overlap,nfft,Fs,...);
%% %% units of overlap are "number of samples"
%% %% defaults: length(window)==length(x)/8, window=Hamming,
%% %% Nfft=max(256,NextPow2), Fs=2*pi, do not detrend
%% %% NextPow2 is the next power of 2 greater than or equal to the
%% %% window length. "Sloppy", "conf" are not available. Default
%% %% window length gives very poor amplitude resolution.
%%
%% To adopt defaults of the Matlab R14 "spectrum.welch" spectrum object
%% associated "psd" method.
%% prev_compat=pwelch('psd');
%% [Pxx,f] = pwelch(x,window,overlap,Nfft,Fs,conf,...);
%% %% overlap is expressed as a percentage of window length,
%% %% defaults: length(window)==64, Nfft=max(256,NextPow2), Fs=2*pi
%% %% do not detrend
%% %% NextPow2 is the next power of 2 greater than or equal to the
%% %% window length. "Sloppy" is not available.
%% %% Default window length gives coarse frequency resolution.
%%
%%
%% REFERENCES
%% [1] Peter D. Welch (June 1967):
%% "The use of fast Fourier transform for the estimation of power spectra:
%% a method based on time averaging over short, modified periodograms."
%% IEEE Transactions on Audio Electroacoustics, Vol AU-15(6), pp 70-73
%%
%% [2] William H. Press and Saul A. Teukolsky and William T. Vetterling and
%% Brian P. Flannery",
%% "Numerical recipes in C, The art of scientific computing", 2nd edition,
%% Cambridge University Press, 2002 --- Section 13.7.
%% [3] Paul Kienzle (1999-2001): "pwelch", http://octave.sourceforge.net/
function [varargout] = pwelch(x,varargin)
%%
%% COMPATIBILITY LEVEL
%% Argument positions and defaults depend on compatibility level selected
%% by calling pwelch without arguments or with a single string argument.
%% native: compatib=1; prev_compat=pwelch(); prev_compat=pwelch([]);
%% matlab R11: compatib=2; prev_compat=pwelch('R11-');
%% matlab R12: compatib=3; prev_compat=pwelch('R12+');
%% spectrum.welch defaults: compatib=4; prev_compat=pwelch('psd');
%% In each case, the returned value is the PREVIOUS compatibility string.
%%
compat_str = {[]; 'R11-'; 'R12+'; 'psd'};
persistent compatib;
if ( isempty(compatib) || compatib<=0 || compatib>4 )
%% legal values are 1, 2, 3, 4
compatib = 1;
end
if ( nargin <= 0 )
error( 'pwelch: Need at least 1 arg. Use "help pwelch".' );
elseif ( nargin==1 && (ischar(x) || isempty(x)) )
varargout{1} = compat_str{compatib};
if ( isempty(x) ) % native
compatib = 1;
elseif ( strcmp(x,'R11-') )
compatib = 2;
elseif ( strcmp(x,'R12+') )
compatib = 3;
elseif ( strcmp(x,'psd') )
compatib = 4;
else
error( 'pwelch: compatibility arg must be empty, R11-, R12+ or psd' );
end
%% return
%%
%% Check fixed argument
elseif ( isempty(x) || ~isvector(x) )
error( 'pwelch: arg 1 (x) must be vector.' );
else
%% force x to be COLUMN vector
if ( size(x,1)==1 )
x=x(:);
end
%%
%% Look through all args to check if cross PSD, transfer function or
%% coherence is required. If yes, the second arg is data vector "y".
arg2_is_y = 0;
x_len = length(x);
nvarargin = length(varargin);
for iarg=1:nvarargin
arg = varargin{iarg};
if ( ~isempty(arg) && ischar(arg) && ...
( strcmp(arg,'cross') || strcmp(arg,'trans') || ...
strcmp(arg,'coher') || strcmp(arg,'ypower') ))
%% OK. Need "y". Grab it from 2nd arg.
arg = varargin{1};
if ( nargin<2 || isempty(arg) || ~isvector(arg) || length(arg)~=x_len )
error( 'pwelch: arg 2 (y) must be vector, same length as x.' );
end
%% force COLUMN vector
y = varargin{1}(:);
arg2_is_y = 1;
break;
end
end
%%
%% COMPATIBILITY
%% To select default argument values, "compatib" is used as an array index.
%% Index values are 1=native, 2=R11, 3=R12, 4=spectrum.welch
%%
%% argument positions:
%% arg_posn = varargin index of window, overlap, Nfft, Fs and conf
%% args respectively, a value of zero ==>> arg does not exist
arg_posn = [1 2 3 4 5; %% native
3 4 1 2 5; %% Matlab R11- pwelch
1 2 3 4 0; %% Matlab R12+ pwelch
1 2 3 4 5]; %% spectrum.welch defaults
arg_posn = arg_posn(compatib,:) + arg2_is_y;
%%
%% SPECIFY SOME DEFAULT VALUES for (not all) optional arguments
%% Use compatib as array index.
%% Fs = sampling frequency
Fs = [ 1.0 2*pi 2*pi 2*pi ];
Fs = Fs(compatib);
%% plot_type: 1='plot'|'squared'; 5='db'|'dB'
plot_type = [ 1 5 5 5 ];
plot_type = plot_type(compatib);
%% rm_mean: 3='long-mean'; 0='no-strip'|'none'
rm_mean = [ 3 0 0 0 ];
rm_mean = rm_mean(compatib);
%% use max_overlap=x_len-1 because seg_len is not available yet
%% units of overlap are different for each version:
%% fraction, samples, or percent
max_overlap = [ 0.95 x_len-1 x_len-1 95];
max_overlap = max_overlap(compatib);
%% default confidence interval
%% if there are more than 2 return values and if there is a "conf" arg
conf = 0.95 * (nargout>2) * (arg_posn(5)>0);
%%
is_win = 0; % =0 means valid window arg is not provided yet
Nfft = []; % default depends on segment length
overlap = []; % WARNING: units can be #samples, fraction or percentage
range = ~isreal(x) || ( arg2_is_y && ~isreal(y) );
is_sloppy = 0;
n_results = 0;
do_power = 0;
do_cross = 0;
do_trans = 0;
do_coher = 0;
do_ypower = 0;
%%
%% DECODE AND CHECK OPTIONAL ARGUMENTS
end_numeric_args = 0;
for iarg = 1+arg2_is_y:nvarargin
arg = varargin{iarg};
if ( ischar(arg) )
%% first string arg ==> no more numeric args
%% non-string args cannot follow a string arg
end_numeric_args = 1;
%%
%% decode control-string arguments
if ( strcmp(arg,'sloppy') )
is_sloppy = ~is_win || is_win==1;
elseif ( strcmp(arg,'plot') || strcmp(arg,'squared') )
plot_type = 1;
elseif ( strcmp(arg,'semilogx') )
plot_type = 2;
elseif ( strcmp(arg,'semilogy') )
plot_type = 3;
elseif ( strcmp(arg,'loglog') )
plot_type = 4;
elseif ( strcmp(arg,'db') || strcmp(arg,'dB') )
plot_type = 5;
elseif ( strcmp(arg,'half') || strcmp(arg,'onesided') )
range = 0;
elseif ( strcmp(arg,'whole') || strcmp(arg,'twosided') )
range = 1;
elseif ( strcmp(arg,'shift') || strcmp(arg,'centerdc') )
range = 2;
elseif ( strcmp(arg,'long-mean') )
rm_mean = 3;
elseif ( strcmp(arg,'linear') )
rm_mean = 2;
elseif ( strcmp(arg,'short') || strcmp(arg,'mean') )
rm_mean = 1;
elseif ( strcmp(arg,'no-strip') || strcmp(arg,'none') )
rm_mean = 0;
elseif ( strcmp(arg, 'power' ) )
if ( ~do_power )
n_results = n_results+1;
do_power = n_results;
end
elseif ( strcmp(arg, 'cross' ) )
if ( ~do_cross )
n_results = n_results+1;
do_cross = n_results;
end
elseif ( strcmp(arg, 'trans' ) )
if ( ~do_trans )
n_results = n_results+1;
do_trans = n_results;
end
elseif ( strcmp(arg, 'coher' ) )
if ( ~do_coher )
n_results = n_results+1;
do_coher = n_results;
end
elseif ( strcmp(arg, 'ypower' ) )
if ( ~do_ypower )
n_results = n_results+1;
do_ypower = n_results;
end
else
error( 'pwelch: string arg %d illegal value: %s', iarg+1, arg );
end
%% end of processing string args
%%
elseif ( end_numeric_args )
if ( ~isempty(arg) )
%% found non-string arg after a string arg ... oops
error( 'pwelch: control arg must be string' );
end
%%
%% first 4 optional arguments are numeric -- in fixed order
%%
%% deal with "Fs" and "conf" first because empty arg is a special default
%% -- "Fs" arg -- sampling frequency
elseif ( iarg == arg_posn(4) )
if ( isempty(arg) )
Fs = 1;
elseif ( ~isscalar(arg) || ~isreal(arg) || arg<0 )
error( 'pwelch: arg %d (Fs) must be real scalar >0', iarg+1 );
else
Fs = arg;
end
%%
%% -- "conf" arg -- confidence level
%% guard against the "it cannot happen" iarg==0
elseif ( arg_posn(5) && iarg == arg_posn(5) )
if ( isempty(arg) )
conf = 0.95;
elseif ( ~isscalar(arg) || ~isreal(arg) || arg < 0.0 || arg >= 1.0 )
error( 'pwelch: arg %d (conf) must be real scalar, >=0, <1',iarg+1 );
else
conf = arg;
end
%%
%% skip all empty args from this point onward
elseif ( isempty(arg) )
1;
%%
%% -- "window" arg -- window function
elseif ( iarg == arg_posn(1) )
if ( isscalar(arg) )
is_win = 1;
elseif ( isvector(arg) )
is_win = length(arg);
if ( size(arg,2)>1 ) %% vector must be COLUMN vector
arg = arg(:);
end
else
is_win = 0;
end
if ( ~is_win )
error( 'pwelch: arg %d (window) must be scalar or vector', iarg+1 );
elseif ( is_win==1 && ( ~isreal(arg) || fix(arg)~=arg || arg<=3 ) )
error( 'pwelch: arg %d (window) must be integer >3', iarg+1 );
elseif ( is_win>1 && ( ~isreal(arg) || any(arg<0) ) )
error( 'pwelch: arg %d (window) vector must be real and >=0',iarg+1);
end
window = arg;
is_sloppy = 0;
%%
%% -- "overlap" arg -- segment overlap
elseif ( iarg == arg_posn(2) )
if (~isscalar(arg) || ~isreal(arg) || arg<0 || arg>max_overlap )
error( 'pwelch: arg %d (overlap) must be real from 0 to %f', ...
iarg+1, max_overlap );
end
overlap = arg;
%%
%% -- "Nfft" arg -- FFT length
elseif ( iarg == arg_posn(3) )
if ( ~isscalar(arg) || ~isreal(arg) || fix(arg)~=arg || arg<0 )
error( 'pwelch: arg %d (Nfft) must be integer >=0', iarg+1 );
end
Nfft = arg;
%%
else
error( 'pwelch: arg %d must be string', iarg+1 );
end
end
if ( conf>0 && (n_results && ~do_power ) )
error('pwelch: can give confidence interval for x power spectrum only' );
end
%%
%% end DECODE AND CHECK OPTIONAL ARGUMENTS.
%%
%% SETUP REMAINING PARAMETERS
%% default action is to calculate power spectrum only
if ( ~n_results )
n_results = 1;
do_power = 1;
end
need_Pxx = do_power || do_trans || do_coher;
need_Pxy = do_cross || do_trans || do_coher;
need_Pyy = do_coher || do_ypower;
log_two = log(2);
nearly_one = 0.99999999999;
%%
%% compatibility-options
%% provides exact compatibility with Matlab R11 or R12
%%
%% Matlab R11 compatibility
if ( compatib==2 )
if ( isempty(Nfft) )
Nfft = min( 256, x_len );
end
if ( is_win > 1 )
seg_len = min( length(window), Nfft );
window = window(1:seg_len);
else
if ( is_win )
%% window arg is scalar
seg_len = window;
else
seg_len = Nfft;
end
%% make Hann window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.5 - 0.5 * cos( (2*pi/xx)*[0:xx].' );
end
%%
%% Matlab R12 compatibility
elseif ( compatib==3 )
if ( is_win > 1 )
%% window arg provides window function
seg_len = length(window);
else
%% window arg does not provide window function; use Hamming
if ( is_win )
%% window arg is scalar
seg_len = window;
else
%% window arg not available; use R12 default, 8 windows
%% ignore overlap arg; use overlap=50% -- only choice that makes sense
%% this is the magic formula for 8 segments with 50% overlap
seg_len = fix( (x_len-3)*2/9 );
end
%% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
if ( isempty(Nfft) )
Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
end
%%
%% Matlab R14 psd(spectrum.welch) defaults
elseif ( compatib==4 )
if ( is_win > 1 )
%% window arg provides window function
seg_len = length(window);
else
%% window arg does not provide window function; use Hamming
if ( is_win )
%% window arg is scalar
seg_len = window;
else
%% window arg not available; use default seg_len = 64
seg_len = 64;
end
%% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
%% Now we know segment length,
%% so we can set default overlap as number of samples
if ( ~isempty(overlap) )
overlap = fix(seg_len * overlap / 100 );
end
if ( isempty(Nfft) )
Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
end
%%
%% default compatibility level
else %if ( compatib==1 )
%% calculate/adjust segment length, window function
if ( is_win > 1 )
%% window arg provides window function
seg_len = length(window);
else
%% window arg does not provide window function; use Hamming
if ( is_win ) %% window arg is scalar
seg_len = window;
else
%% window arg not available; use default length:
%% = sqrt(length(x)) rounded up to nearest integer power of 2
if ( isempty(overlap) )
overlap=0.5;
end
seg_len = 2 ^ ceil( log(sqrt(x_len/(1-overlap)))*nearly_one/log_two );
end
%% make Hamming window (don't depend on sigproc)
xx = seg_len - 1;
window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
end
%% Now we know segment length,
%% so we can set default overlap as number of samples
if ( ~isempty(overlap) )
overlap = fix(seg_len * overlap);
end
%%
%% calculate FFT length
if ( isempty(Nfft) )
Nfft = seg_len;
end
if ( is_sloppy )
Nfft = 2 ^ ceil( log(Nfft) * nearly_one / log_two );
end
end
%% end of compatibility options
%%
%% minimum FFT length is seg_len
Nfft = max( Nfft, seg_len );
%% Mean square of window is required for normalising PSD amplitude.
win_meansq = (window.' * window) / seg_len;
%%
%% Set default or check overlap.
if ( isempty(overlap) )
overlap = fix(seg_len /2);
elseif ( overlap >= seg_len )
error( 'pwelch: arg (overlap=%d) too big. Must be <length(window)=%d',...
overlap, seg_len );
end
%%
%% Pad data with zeros if shorter than segment. This should not happen.
if ( x_len < seg_len )
x = [x; zeros(seg_len-x_len,1)];
if ( arg2_is_y )
y = [y; zeros(seg_len-x_len,1)];
end
x_len = seg_len;
end
%% end SETUP REMAINING PARAMETERS
%%
%%
%% MAIN CALCULATIONS
%% Remove mean from the data
if ( rm_mean == 3 )
n_ffts = max( 0, fix( (x_len-seg_len)/(seg_len-overlap) ) ) + 1;
x_len = min( x_len, (seg_len-overlap)*(n_ffts-1)+seg_len );
if ( need_Pxx || need_Pxy )
x = x - sum( x(1:x_len) ) / x_len;
end
if ( arg2_is_y || need_Pxy)
y = y - sum( y(1:x_len) ) / x_len;
end
end
%%
%% Calculate and accumulate periodograms
%% xx and yy are padded data segments
%% Pxx, Pyy, Pyy are periodogram sums, Vxx is for confidence interval
xx = zeros(Nfft,1);
yy = xx;
Pxx = xx;
Pxy = xx;
Pyy = xx;
if ( conf>0 )
Vxx = xx;
else
Vxx = [];
end
n_ffts = 0;
for start_seg = [1:seg_len-overlap:x_len-seg_len+1]
end_seg = start_seg+seg_len-1;
%% Don't truncate/remove the zero padding in xx and yy
if ( need_Pxx || need_Pxy )
if ( rm_mean==1 ) % remove mean from segment
xx(1:seg_len) = window .* ( ...
x(start_seg:end_seg) - sum(x(start_seg:end_seg)) / seg_len);
elseif ( rm_mean == 2 ) % remove linear trend from segment
xx(1:seg_len) = window .* detrend( x(start_seg:end_seg) );
else % rm_mean==0 or 3
xx(1:seg_len) = window .* x(start_seg:end_seg);
end
fft_x = fft(xx);
end
if ( need_Pxy || need_Pyy )
if ( rm_mean==1 ) % remove mean from segment
yy(1:seg_len) = window .* ( ...
y(start_seg:end_seg) - sum(y(start_seg:end_seg)) / seg_len);
elseif ( rm_mean == 2 ) % remove linear trend from segment
yy(1:seg_len) = window .* detrend( y(start_seg:end_seg) );
else % rm_mean==0 or 3
yy(1:seg_len) = window .* y(start_seg:end_seg);
end
fft_y = fft(yy);
end
if ( need_Pxx )
%% force Pxx to be real; pgram = periodogram
pgram = real(fft_x .* conj(fft_x));
Pxx = Pxx + pgram;
%% sum of squared periodograms is required for confidence interval
if ( conf>0 )
Vxx = Vxx + pgram .^2;
end
end
if ( need_Pxy )
%% Pxy (cross power spectrum) is complex. Do not force to be real.
Pxy = Pxy + fft_y .* conj(fft_x);
end
if ( need_Pyy )
%% force Pyy to be real
Pyy = Pyy + real(fft_y .* conj(fft_y));
end
n_ffts = n_ffts +1;
end
%%
%% Calculate confidence interval
%% -- incorrectly assumes that the periodogram has Gaussian probability
%% distribution (actually, it has a single-sided (e.g. exponential)
%% distribution.
%% Sample variance of periodograms is (Vxx-Pxx.^2/n_ffts)/(n_ffts-1).
%% This method of calculating variance is more susceptible to round-off
%% error, but is quicker, and for double-precision arithmetic and the
%% inherently noisy periodogram (variance==mean^2), it should be OK.
if ( conf>0 && need_Pxx )
if ( n_ffts<2 )
Vxx = zeros(Nfft,1);
else
%% Should use student distribution here (for unknown variance), but tinv
%% is not a core Matlab function (is in statistics toolbox. Grrr)
Vxx = (erfinv(conf)*sqrt(2*n_ffts/(n_ffts-1))) * sqrt(Vxx-Pxx.^2/n_ffts);
end
end
%%
%% Convert two-sided spectra to one-sided spectra (if range == 0).
%% For one-sided spectra, contributions from negative frequencies are added
%% to the positive side of the spectrum -- but not at zero or Nyquist
%% (half sampling) frequencies. This keeps power equal in time and spectral
%% domains, as required by Parseval theorem.
%%
if ( range == 0 )
if ( ~ rem(Nfft,2) ) %% one-sided, Nfft is even
psd_len = Nfft/2+1;
if ( need_Pxx )
Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1); 0];
if ( conf>0 )
Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1); 0];
end
end
if ( need_Pxy )
Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1); 0]);
end
if ( need_Pyy )
Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1); 0];
end
else %% one-sided, Nfft is odd
psd_len = (Nfft+1)/2;
if ( need_Pxx )
Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1)];
if ( conf>0 )
Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1)];
end
end
if ( need_Pxy )
Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1)]);
end
if ( need_Pyy )
Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1)];
end
end
else %% two-sided (and shifted)
psd_len = Nfft;
end
%% end MAIN CALCULATIONS
%%
%% SCALING AND OUTPUT
%% Put all results in matrix, one row per spectrum
%% Pxx, Pxy, Pyy are sums of periodograms, so "n_ffts"
%% in the scale factor converts them into averages
spectra = zeros(psd_len,n_results);
spect_type = zeros(n_results,1);
scale = n_ffts * seg_len * Fs * win_meansq;
if ( do_power )
spectra(:,do_power) = Pxx / scale;
spect_type(do_power) = 1;
if ( conf>0 )
Vxx = [Pxx-Vxx Pxx+Vxx]/scale;
end
end
if ( do_cross )
spectra(:,do_cross) = Pxy / scale;
spect_type(do_cross) = 2;
end
if ( do_trans )
spectra(:,do_trans) = Pxy ./ Pxx;
spect_type(do_trans) = 3;
end
if ( do_coher )
%% force coherence to be real
spectra(:,do_coher) = real(Pxy .* conj(Pxy)) ./ Pxx ./ Pyy;
spect_type(do_coher) = 4;
end
if ( do_ypower )
spectra(:,do_ypower) = Pyy / scale;
spect_type(do_ypower) = 5;
end
freq = [0:psd_len-1].' * ( Fs / Nfft );
%%
%% range='shift': Shift zero-frequency to the middle
if ( range == 2 )
len2 = fix((Nfft+1)/2);
spectra = [ spectra(len2+1:Nfft,:); spectra(1:len2,:)];
freq = [ freq(len2+1:Nfft)-Fs; freq(1:len2)];
if ( conf>0 )
Vxx = [ Vxx(len2+1:Nfft,:); Vxx(1:len2,:)];
end
end
%%
%% RETURN RESULTS or PLOT
if ( nargout>=2 && conf>0 )
varargout{2} = Vxx;
end
if ( nargout>=(2+(conf>0)) )
%% frequency is 2nd or 3rd return value,
%% depends on if 2nd is confidence interval
varargout{2+(conf>0)} = freq;
end
if ( nargout>=1 )
varargout{1} = spectra;
else
%%
%% Plot the spectra if there are no return variables.
plot_title=['power spectrum x ';
'cross spectrum ';
'transfer function';
'coherence ';
'power spectrum y ' ];
for ii = 1: n_results
if ( conf>0 && spect_type(ii)==1 )
Vxxxx = Vxx;
else
Vxxxx = [];
end
if ( n_results > 1 )
figure();
end
if ( plot_type == 1 )
plot(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 2 )
semilogx(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 3 )
semilogy(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 4 )
loglog(freq,[abs(spectra(:,ii)) Vxxxx]);
elseif ( plot_type == 5 ) % db
ylabel( 'amplitude (dB)' );
plot(freq,[10*log10(abs(spectra(:,ii))) 10*log10(abs(Vxxxx))]);
end
title( char(plot_title(spect_type(ii),:)) );
ylabel( 'amplitude' );
%% Plot phase of cross spectrum and transfer function
if ( spect_type(ii)==2 || spect_type(ii)==3 )
figure();
if ( plot_type==2 || plot_type==4 )
semilogx(freq,180/pi*angle(spectra(:,ii)));
else
plot(freq,180/pi*angle(spectra(:,ii)));
end
title( char(plot_title(spect_type(ii),:)) );
ylabel( 'phase' );
end
end %for
end
end
end
%!demo
%! fflush(stdout);
%! rand('seed',2038014164);
%! a = [ 1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746 ];
%! white = rand(1,16384);
%! signal = detrend(filter(0.70181,a,white));
%! % frequency shift by modulating with exp(j.omega.t)
%! skewed = signal.*exp(2*pi*i*2/25*[1:16384]);
%! Fs = 25; % sampling frequency
%! hold off
%! pwelch([]);
%! pwelch(signal);
%! disp('Default settings: Fs=1Hz, overlap=0.5, no padding' )
%! input('Onesided power spectral density (real data). Press ENTER', 's' );
%! hold on
%! pwelch(skewed);
%! disp('Frequency-shifted complex data. Twosided wrap-around spectrum.' );
%! input('Area is same as one-sided spectrum. Press ENTER', 's' );
%! pwelch(signal,'shift','semilogy');
%! input('Twosided, centred zero-frequency, lin-log plot. Press ENTER', 's' );
%! hold off
%! figure();
%! pwelch(skewed,[],[],[],Fs,'shift','semilogy');
%! input('Actual Fs=25 Hz. Note change of scales. Press ENTER', 's' );
%! pwelch(skewed,[],[],[],Fs,0.95,'shift','semilogy');
%! input('Spectral density with 95% confidence interval. Press ENTER', 's' );
%! pwelch('R12+');
%! pwelch(signal,'squared');
%! input('Spectral density with Matlab R12 defaults. Press ENTER', 's' );
%! figure();
%! pwelch([]);
%! pwelch(signal,3640,[],4096,2*pi,[],'no-strip');
%! input('Same spectrum with 95% confidence interval. Press ENTER', 's' );
%! figure();
%! pwelch(signal,[],[],[],2*pi,0.95,'no-strip');
%! input('95% confidence interval with native defaults. Press ENTER', 's' );
%! pwelch(signal,64,[],[],2*pi,'no-strip');
%! input('Only 32 frequency values in this spectrum. Press ENTER', 's' );
%! hold on
%! pwelch(signal,64,[],256,2*pi,'no-strip');
%! input('4:1 zero padding gives artificial smoothing. Press ENTER', 's' );
%! figure();
%! pwelch('psd');
%! pwelch(signal,'squared');
%! input('Just like Matlab spectrum.welch(...) defaults. Press ENTER', 's' );
%! hold off
%! pwelch({});
%! pwelch(white,signal,'trans','coher','short')
%! input('Transfer and coherence functions. Press ENTER', 's' );
%! disp('Use "close all" to remove plotting windows.' );
|