This file is indexed.

/usr/share/octave/packages/signal-1.2.2/pwelch.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
%% Copyright (C) 2006 Peter V. Lanspeary <pvl@mecheng.adelaide.edu.au>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.

%% USAGE:
%%   [spectra,freq] = pwelch(x,window,overlap,Nfft,Fs,
%%                           range,plot_type,detrend,sloppy)
%%     Estimate power spectral density of data "x" by the Welch (1967)
%%     periodogram/FFT method.  All arguments except "x" are optional.
%%         The data is divided into segments.  If "window" is a vector, each
%%     segment has the same length as "window" and is multiplied by "window"
%%     before (optional) zero-padding and calculation of its periodogram. If
%%     "window" is a scalar, each segment has a length of "window" and a
%%     Hamming window is used.
%%         The spectral density is the mean of the periodograms, scaled so that
%%     area under the spectrum is the same as the mean square of the
%%     data.  This equivalence is supposed to be exact, but in practice there
%%     is a mismatch of up to 0.5% when comparing area under a periodogram
%%     with the mean square of the data.
%%
%%  [spectra,freq] = pwelch(x,y,window,overlap,Nfft,Fs,
%%                          range,plot_type,detrend,sloppy,results)
%%     Two-channel spectrum analyser.  Estimate power spectral density, cross-
%%     spectral density, transfer function and/or coherence functions of time-
%%     series input data "x" and output data "y" by the Welch (1967)
%%     periodogram/FFT method.
%%       pwelch treats the second argument as "y" if there is a control-string
%%     argument "cross", "trans", "coher" or "ypower"; "power" does not force
%%     the 2nd argument to be treated as "y".  All other arguments are
%%     optional.  All spectra are returned in matrix "spectra". 
%%
%%  [spectra,Pxx_ci,freq] = pwelch(x,window,overlap,Nfft,Fs,conf,
%%                                 range,plot_type,detrend,sloppy)
%%  [spectra,Pxx_ci,freq] = pwelch(x,y,window,overlap,Nfft,Fs,conf,
%%                                 range,plot_type,detrend,sloppy,results)
%%     Estimates confidence intervals for the spectral density.
%%     See Hint (7) below for compatibility options.  Confidence level "conf"
%%     is the 6th or 7th numeric argument.  If "results" control-string 
%%     arguments are used, one of them must be "power" when the "conf"
%%     argument is present; pwelch can estimate confidence intervals only for
%%     the power spectrum of the "x" data.  It does not know how to estimate
%%     confidence intervals of the cross-power spectrum, transfer function or
%%     coherence; if you can suggest a good method, please send a bug report.
%%
%% ARGUMENTS
%% All but the first argument are optional and may be empty, except that
%% the "results" argument may require the second argument to be "y".
%%
%% x           %% [non-empty vector] system-input time-series data
%% y           %% [non-empty vector] system-output time-series data
%%
%% window      %% [real vector] of window-function values between 0 and 1; the
%%             %%       data segment has the same length as the window.
%%             %%       Default window shape is Hamming.
%%             %% [integer scalar] length of each data segment.  The default
%%             %%       value is window=sqrt(length(x)) rounded up to the
%%             %%       nearest integer power of 2; see 'sloppy' argument.
%%
%% overlap     %% [real scalar] segment overlap expressed as a multiple of
%%             %%       window or segment length.   0 <= overlap < 1,
%%             %%       The default is overlap=0.5 .
%%
%% Nfft        %% [integer scalar] Length of FFT.  The default is the length
%%             %%       of the "window" vector or has the same value as the
%%             %%       scalar "window" argument.  If Nfft is larger than the
%%             %%       segment length, "seg_len", the data segment is padded
%%             %%       with "Nfft-seg_len" zeros.  The default is no padding.
%%             %%       Nfft values smaller than the length of the data
%%             %%       segment (or window) are ignored silently.
%%
%% Fs          %% [real scalar] sampling frequency (Hertz); default=1.0
%%
%% conf        %% [real scalar] confidence level between 0 and 1.  Confidence
%%             %%       intervals of the spectral density are estimated from
%%             %%       scatter in the periodograms and are returned as Pxx_ci.
%%             %%       Pxx_ci(:,1) is the lower bound of the confidence
%%             %%       interval and Pxx_ci(:,2) is the upper bound.  If there
%%             %%       are three return values, or conf is an empty matrix,
%%             %%       confidence intervals are calculated for conf=0.95 .
%%             %%       If conf is zero or is not given, confidence intervals
%%             %%       are not calculated. Confidence intervals can be 
%%             %%       obtained only for the power spectral density of x;
%%             %%       nothing else.
%%
%% CONTROL-STRING ARGUMENTS -- each of these arguments is a character string.
%%   Control-string arguments must be after the other arguments but can be in
%%   any order.
%%  
%% range     %% 'half',  'onesided' : frequency range of the spectrum is
%%           %%       zero up to but not including Fs/2.  Power from
%%           %%       negative frequencies is added to the positive side of
%%           %%       the spectrum, but not at zero or Nyquist (Fs/2)
%%           %%       frequencies.  This keeps power equal in time and
%%           %%       spectral domains.  See reference [2].
%%           %% 'whole', 'twosided' : frequency range of the spectrum is
%%           %%       -Fs/2 to Fs/2, with negative frequencies
%%           %%       stored in "wrap around" order after the positive
%%           %%       frequencies; e.g. frequencies for a 10-point 'twosided'
%%           %%       spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1
%%           %% 'shift', 'centerdc' : same as 'whole' but with the first half
%%           %%       of the spectrum swapped with second half to put the
%%           %%       zero-frequency value in the middle. (See "help
%%           %%       fftshift".
%%           %% If data (x and y) are real, the default range is 'half',
%%           %% otherwise default range is 'whole'.
%%
%% plot_type %% 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':
%%           %% specifies the type of plot.  The default is 'plot', which
%%           %% means linear-linear axes. 'squared' is the same as 'plot'.
%%           %% 'dB' plots "10*log10(psd)".  This argument is ignored and a
%%           %% spectrum is not plotted if the caller requires a returned
%%           %% value.
%%
%% detrend   %% 'no-strip', 'none' -- do NOT remove mean value from the data
%%           %% 'short', 'mean' -- remove the mean value of each segment from
%%           %%                    each segment of the data.
%%           %% 'linear',       -- remove linear trend from each segment of
%%           %%                    the data.
%%           %% 'long-mean'     -- remove the mean value from the data before
%%           %%              splitting it into segments.  This is the default.
%%
%%   sloppy  %% 'sloppy': FFT length is rounded up to the nearest integer
%%           %%       power of 2 by zero padding.  FFT length is adjusted
%%           %%       after addition of padding by explicit Nfft argument.
%%           %%       The default is to use exactly the FFT and window/

%%           %%       segment lengths specified in argument list.
%%
%%   results %% specifies what results to return (in the order specified
%%           %%   and as many as desired).
%%           %% 'power' calculate power spectral density of "x"
%%           %% 'cross' calculate cross spectral density of "x" and "y"
%%           %% 'trans' calculate transfer function of a system with
%%           %%         input "x" and output "y"
%%           %% 'coher' calculate coherence function of "x" and "y"
%%           %% 'ypower' calculate power spectral density of "y"
%%           %%  The default is 'power', with argument "y" omitted. 
%%
%% RETURNED VALUES:
%%   If return values are not required by the caller, the results are
%%     plotted and nothing is returned.
%%
%%   spectra %% [real-or-complex matrix] columns of the matrix contain results
%%           %%        in the same order as specified by "results" arguments.
%%           %%        Each column contains one of the result vectors.
%%
%%   Pxx_ci  %% [real matrix] estimate of confidence interval for power
%%           %%        spectral density of x.  First column is the lower
%%           %%        bound.  Second column is the upper bound.
%%
%%   freq    %% [real column vector] frequency values 
%%
%% HINTS
%% 1) EMPTY ARGS:
%%    if you don't want to use an optional argument you can leave it empty
%%    by writing its value as [].
%% 2) FOR BEGINNERS:
%%    The profusion of arguments may make pwelch difficult to use, and an
%%    unskilled user can easily produce a meaningless result or can easily
%%    mis-interpret the result.  With real data "x" and sampling frequency
%%    "Fs", the easiest and best way for a beginner to use pwelch is
%%    probably "pwelch(x,[],[],[],Fs)".  Use the "window" argument to
%%    control the length of the spectrum vector.  For real data and integer
%%    scalar M, "pwelch(x,2*M,[],[],Fs)" gives an M+1 point spectrum.
%%    Run "demo pwelch" (octave only).
%% 3) WINDOWING FUNCTIONS:
%%    Without a window function, sharp spectral peaks can have strong
%%    sidelobes because the FFT of a data in a segment is in effect convolved
%%    with a rectangular window.  A window function which tapers off
%%    (gradually) at the ends produces much weaker sidelobes in the FFT.
%%    Hann (hanning), hamming, bartlett, blackman, flattopwin etc are
%%    available as separate Matlab/sigproc or Octave functions.  The sidelobes
%%    of the Hann window have a roll-off rate of 60dB/decade of frequency.
%%    The first sidelobe of the Hamming window is suppressed and is about 12dB
%%    lower than the first Hann sidelobe, but the roll-off rate is only
%%    20dB/decade.  You can inspect the FFT of a Hann window by plotting
%%    "abs(fft(postpad(hanning(256),4096,0)))".
%%    The default window is Hamming.
%% 4) ZERO PADDING:
%%    Zero-padding reduces the frequency step in the
%%    spectrum, and produces an artificially smoothed spectrum.  For example,
%%    "Nfft=2*length(window)" gives twice as many frequency values, but
%%    adjacent PSD (power spectral density) values are not independent;
%%    adjacent PSD values are independent if "Nfft=length(window)", which is
%%    the default value of Nfft.
%% 5) REMOVING MEAN FROM SIGNAL: 
%%    If the mean is not removed from the signal there is a large spectral
%%    peak at zero frequency and the sidelobes of this peak are likely to
%%    swamp the rest of the spectrum.  For this reason, the default behaviour
%%    is to remove the mean.  However, the matlab pwelch does not do this.
%% 6) WARNING ON CONFIDENCE INTERVALS
%%    Confidence intervals are obtained by measuring the sample variance of
%%    the periodograms and assuming that the periodograms have a Gaussian
%%    probability distribution.  This assumption is not accurate.  If, for
%%    example, the data (x) is Gaussian, the periodogram has a Rayleigh
%%    distribution.  However, the confidence intervals may still be  useful.
%%    
%% 7) COMPATIBILITY WITH Matlab R11, R12, etc
%%    When used without the second data (y) argument, arguments are compatible
%%    with the pwelch of Matlab R12, R13, R14, 2006a and 2006b except that
%%     1) overlap is expressed as a multiple of window length ---
%%        effect of overlap scales with window length
%%     2) default values of length(window), Nfft and Fs are more sensible, and
%%     3) Goertzel algorithm is not available so Nfft cannot be an array of
%%        frequencies as in Matlab 2006b.
%%    Pwelch has four persistent Matlab-compatibility levels.  Calling pwelch
%%    with an empty first argument sets the order of arguments and defaults
%%    specified above in the USAGE and ARGUMENTS section of this documentation.
%%          prev_compat=pwelch([]);
%%          [Pxx,f]=pwelch(x,window,overlap,Nfft,Fs,conf,...);
%%    Calling pwelch with a single string argument (as described below) gives
%%    compatibility with Matlab R11 or R12, or the R14 spectrum.welch
%%    defaults.  The returned value is the PREVIOUS compatibility string.
%%
%%    Matlab R11:  For compatibility with the Matlab R11 pwelch:
%%          prev_compat=pwelch('R11-');
%%          [Pxx,f]=pwelch(x,Nfft,Fs,window,overlap,conf,range,units);
%%          %% units of overlap are "number of samples"
%%          %% defaults: Nfft=min(length(x),256), Fs=2*pi, length(window)=Nfft,
%%          %%           window=Hanning, do not detrend,
%%          %% N.B.  "Sloppy" is not available.
%%
%%    Matlab R12:  For compatibility with Matlab R12 to 2006a pwelch:
%%          prev_compat=pwelch('R12+');
%%          [Pxx,f]=pwelch(x,window,overlap,nfft,Fs,...);
%%          %% units of overlap are "number of samples"
%%          %% defaults: length(window)==length(x)/8, window=Hamming,
%%          %%           Nfft=max(256,NextPow2), Fs=2*pi, do not detrend
%%          %% NextPow2 is the next power of 2 greater than or equal to the
%%          %% window length. "Sloppy", "conf" are not available.  Default
%%          %% window length gives very poor amplitude resolution.
%%
%%    To adopt defaults of the Matlab R14 "spectrum.welch" spectrum object
%%    associated "psd" method.
%%          prev_compat=pwelch('psd');
%%          [Pxx,f] = pwelch(x,window,overlap,Nfft,Fs,conf,...);
%%          %% overlap is expressed as a percentage of window length,
%%          %% defaults: length(window)==64, Nfft=max(256,NextPow2), Fs=2*pi
%%          %%           do not detrend
%%          %% NextPow2 is the next power of 2 greater than or equal to the
%%          %% window length. "Sloppy" is not available.
%%          %% Default window length gives coarse frequency resolution.
%%
%%
%% REFERENCES
%%  [1] Peter D. Welch (June 1967): 
%%   "The use of fast Fourier transform for the estimation of power spectra:
%%   a method based on time averaging over short, modified periodograms."
%%   IEEE Transactions on Audio Electroacoustics, Vol AU-15(6), pp 70-73
%%
%%  [2] William H. Press and Saul A. Teukolsky and William T. Vetterling and
%%               Brian P. Flannery",
%%   "Numerical recipes in C, The art of scientific computing", 2nd edition,
%%      Cambridge University Press, 2002 --- Section 13.7.
%%  [3] Paul Kienzle (1999-2001): "pwelch", http://octave.sourceforge.net/

function [varargout] = pwelch(x,varargin)
  %%
  %% COMPATIBILITY LEVEL
  %% Argument positions and defaults depend on compatibility level selected
  %% by calling pwelch without arguments or with a single string argument.
  %%   native:      compatib=1; prev_compat=pwelch(); prev_compat=pwelch([]);
  %%   matlab R11:  compatib=2; prev_compat=pwelch('R11-');
  %%   matlab R12:  compatib=3; prev_compat=pwelch('R12+');
  %%   spectrum.welch defaults:  compatib=4; prev_compat=pwelch('psd');
  %% In each case, the returned value is the PREVIOUS compatibility string.
  %%
  compat_str = {[]; 'R11-'; 'R12+'; 'psd'};
  persistent compatib;
  if ( isempty(compatib) || compatib<=0 || compatib>4 )
    %% legal values are 1, 2, 3, 4

    compatib = 1;
  end
  if ( nargin <= 0 )
    error( 'pwelch: Need at least 1 arg. Use "help pwelch".' );
  elseif ( nargin==1 && (ischar(x) || isempty(x)) )
    varargout{1} = compat_str{compatib};
    if ( isempty(x) ) % native
      compatib = 1;
    elseif ( strcmp(x,'R11-') )
      compatib = 2;
    elseif ( strcmp(x,'R12+') )
      compatib = 3;
    elseif ( strcmp(x,'psd') )
      compatib = 4;
    else
      error( 'pwelch: compatibility arg must be empty, R11-, R12+ or psd' );
    end
    %% return
  %%
  %% Check fixed argument
  elseif ( isempty(x) || ~isvector(x) )
    error( 'pwelch: arg 1 (x) must be vector.' );
  else
    %%  force x to be COLUMN vector
    if ( size(x,1)==1 )
      x=x(:);
    end
    %%
    %% Look through all args to check if  cross PSD, transfer function or
    %% coherence is required.  If yes, the second arg is data vector "y".
    arg2_is_y = 0;
    x_len = length(x);
    nvarargin = length(varargin);
    for iarg=1:nvarargin
      arg = varargin{iarg};
      if ( ~isempty(arg) && ischar(arg) && ...
           ( strcmp(arg,'cross') || strcmp(arg,'trans') || ...
             strcmp(arg,'coher') || strcmp(arg,'ypower') ))
        %% OK. Need "y". Grab it from 2nd arg.
        arg = varargin{1};
        if ( nargin<2 || isempty(arg) || ~isvector(arg) || length(arg)~=x_len )
          error( 'pwelch: arg 2 (y) must be vector, same length as x.' );
        end
        %% force  COLUMN vector
        y = varargin{1}(:);
        arg2_is_y = 1;
        break;
      end
    end
    %%
    %% COMPATIBILITY
    %% To select default argument values, "compatib" is used as an array index.
    %% Index values are   1=native,  2=R11,  3=R12,  4=spectrum.welch
    %%
    %%  argument positions:
    %%  arg_posn = varargin index of window, overlap, Nfft, Fs and conf
    %%             args respectively, a value of zero ==>> arg does not exist
    arg_posn = [1 2 3 4 5;  %% native
                3 4 1 2 5;  %% Matlab R11- pwelch
                1 2 3 4 0;  %% Matlab R12+ pwelch
                1 2 3 4 5]; %% spectrum.welch defaults
    arg_posn  = arg_posn(compatib,:) + arg2_is_y;
    %%
    %%  SPECIFY SOME DEFAULT VALUES for (not all) optional arguments
    %%  Use compatib as array index.
    %%  Fs = sampling frequency
    Fs        = [ 1.0 2*pi 2*pi 2*pi ];
    Fs        = Fs(compatib);            
    %%  plot_type: 1='plot'|'squared'; 5='db'|'dB'
    plot_type = [ 1 5 5 5 ];
    plot_type = plot_type(compatib);
    %%  rm_mean: 3='long-mean'; 0='no-strip'|'none'
    rm_mean   = [ 3 0 0 0 ];
    rm_mean   = rm_mean(compatib);
    %% use max_overlap=x_len-1 because seg_len is not available yet
    %% units of overlap are different for each version:
    %%    fraction, samples, or percent
    max_overlap = [ 0.95 x_len-1 x_len-1 95];
    max_overlap = max_overlap(compatib);
    %% default confidence interval
    %%  if there are more than 2 return values and if there is a "conf" arg
    conf      = 0.95 * (nargout>2) * (arg_posn(5)>0);
    %%
    is_win    = 0;    % =0 means valid window arg is not provided yet
    Nfft      = [];   % default depends on segment length
    overlap   = [];   % WARNING: units can be #samples, fraction or percentage
    range     = ~isreal(x) || ( arg2_is_y && ~isreal(y) );
    is_sloppy = 0;
    n_results = 0;
    do_power  = 0;   
    do_cross  = 0;
    do_trans  = 0;
    do_coher  = 0;
    do_ypower = 0;
  %%
  %%  DECODE AND CHECK OPTIONAL ARGUMENTS
    end_numeric_args = 0;
    for iarg = 1+arg2_is_y:nvarargin
      arg = varargin{iarg};
      if ( ischar(arg) )
        %% first string arg ==> no more numeric args
        %% non-string args cannot follow a string arg
        end_numeric_args = 1;
        %%
        %% decode control-string arguments
        if ( strcmp(arg,'sloppy') )
          is_sloppy = ~is_win || is_win==1;
        elseif ( strcmp(arg,'plot') || strcmp(arg,'squared') )
          plot_type = 1;
        elseif ( strcmp(arg,'semilogx') )
          plot_type = 2;
        elseif ( strcmp(arg,'semilogy') )
          plot_type = 3;
        elseif ( strcmp(arg,'loglog') )
          plot_type = 4;
        elseif ( strcmp(arg,'db') || strcmp(arg,'dB') )
          plot_type = 5;
        elseif ( strcmp(arg,'half') || strcmp(arg,'onesided') )
          range = 0;
        elseif ( strcmp(arg,'whole') || strcmp(arg,'twosided') )
          range = 1;
        elseif ( strcmp(arg,'shift') || strcmp(arg,'centerdc') )
          range = 2;
        elseif ( strcmp(arg,'long-mean') )
          rm_mean = 3;
        elseif ( strcmp(arg,'linear') )
          rm_mean = 2;
        elseif ( strcmp(arg,'short') || strcmp(arg,'mean') )
          rm_mean = 1;
        elseif ( strcmp(arg,'no-strip') || strcmp(arg,'none') )
          rm_mean = 0;
        elseif ( strcmp(arg, 'power' ) )
          if ( ~do_power )
            n_results = n_results+1;
            do_power = n_results;
          end
        elseif ( strcmp(arg, 'cross' ) )
          if ( ~do_cross )
            n_results = n_results+1;
            do_cross = n_results;
          end
        elseif ( strcmp(arg, 'trans' ) )
          if ( ~do_trans )
            n_results = n_results+1;
            do_trans = n_results;
          end
        elseif ( strcmp(arg, 'coher' ) )
          if ( ~do_coher )
            n_results = n_results+1;
            do_coher = n_results;
          end
        elseif ( strcmp(arg, 'ypower' ) )
          if ( ~do_ypower )
            n_results = n_results+1;
            do_ypower = n_results;
          end
        else
          error( 'pwelch: string arg %d illegal value: %s', iarg+1, arg ); 
        end
        %% end of processing string args
        %%
      elseif ( end_numeric_args )
        if ( ~isempty(arg) )
          %% found non-string arg after a string arg ... oops
          error( 'pwelch: control arg must be string' );
        end
      %%
      %% first 4 optional arguments are numeric -- in fixed order
      %%
      %% deal with "Fs" and "conf" first because empty arg is a special default
      %% -- "Fs" arg -- sampling frequency
      elseif ( iarg == arg_posn(4) )
        if ( isempty(arg) )
          Fs = 1;
        elseif ( ~isscalar(arg) || ~isreal(arg) || arg<0 )
          error( 'pwelch: arg %d (Fs) must be real scalar >0', iarg+1 );
        else
          Fs = arg;
        end
      %%
      %%  -- "conf" arg -- confidence level
      %%    guard against the "it cannot happen" iarg==0
      elseif ( arg_posn(5) && iarg == arg_posn(5) )
        if ( isempty(arg) )
          conf = 0.95;
        elseif ( ~isscalar(arg) || ~isreal(arg) || arg < 0.0 || arg >= 1.0 )
          error( 'pwelch: arg %d (conf) must be real scalar, >=0, <1',iarg+1 );
        else
          conf = arg;
        end
      %%
      %% skip all empty args from this point onward
      elseif ( isempty(arg) )
        1;
      %%
      %%  -- "window" arg -- window function
      elseif ( iarg == arg_posn(1) )
        if ( isscalar(arg) )
          is_win = 1;
        elseif ( isvector(arg) )
          is_win = length(arg);
          if ( size(arg,2)>1 )  %% vector must be COLUMN vector
            arg = arg(:);
          end
        else 
          is_win = 0;
        end
        if ( ~is_win )
          error( 'pwelch: arg %d (window) must be scalar or vector', iarg+1 );
        elseif ( is_win==1 && ( ~isreal(arg) || fix(arg)~=arg || arg<=3 ) )
          error( 'pwelch: arg %d (window) must be integer >3', iarg+1 );
        elseif ( is_win>1 && ( ~isreal(arg) || any(arg<0) ) )
          error( 'pwelch: arg %d (window) vector must be real and >=0',iarg+1);
        end
        window = arg;
        is_sloppy = 0;
      %%
      %% -- "overlap" arg -- segment overlap
      elseif ( iarg == arg_posn(2) )
        if (~isscalar(arg) || ~isreal(arg) || arg<0 || arg>max_overlap )
          error( 'pwelch: arg %d (overlap) must be real from 0 to %f', ...
                 iarg+1, max_overlap );
        end
        overlap = arg;
      %%
      %% -- "Nfft" arg -- FFT length
      elseif ( iarg == arg_posn(3) )
        if ( ~isscalar(arg) || ~isreal(arg) || fix(arg)~=arg || arg<0 )
          error( 'pwelch: arg %d (Nfft) must be integer >=0', iarg+1 );
        end
        Nfft = arg;
      %%
      else
        error( 'pwelch: arg %d  must be string', iarg+1 );
      end
    end
    if ( conf>0 && (n_results && ~do_power ) )
     error('pwelch: can give confidence interval for x power spectrum only' );
      end
    %%
    %% end DECODE AND CHECK OPTIONAL ARGUMENTS.
    %%
    %% SETUP REMAINING PARAMETERS
    %% default action is to calculate power spectrum only
    if ( ~n_results )
      n_results = 1;
      do_power = 1;
    end
    need_Pxx = do_power || do_trans || do_coher;
    need_Pxy = do_cross || do_trans || do_coher;
    need_Pyy = do_coher || do_ypower;
    log_two = log(2);
    nearly_one = 0.99999999999;
    %%
    %% compatibility-options
    %% provides exact compatibility with Matlab R11 or R12
    %%
    %% Matlab R11 compatibility
    if ( compatib==2 )
      if ( isempty(Nfft) )
        Nfft = min( 256, x_len );
      end
      if ( is_win > 1 )
        seg_len = min( length(window), Nfft );
        window = window(1:seg_len);
      else
        if ( is_win )
          %% window arg is scalar
          seg_len = window;
        else
          seg_len = Nfft;
        end
        %% make Hann window (don't depend on sigproc)
        xx = seg_len - 1;
        window = 0.5 - 0.5 * cos( (2*pi/xx)*[0:xx].' );
      end
    %%
    %% Matlab R12 compatibility
    elseif ( compatib==3 )
      if ( is_win > 1 )
        %% window arg provides window function
        seg_len = length(window);
      else
        %% window arg does not provide window function; use Hamming
        if ( is_win )
          %% window arg is scalar
          seg_len = window;
        else
          %% window arg not available; use R12 default, 8 windows
          %% ignore overlap arg; use overlap=50% -- only choice that makes sense
          %% this is the magic formula for 8 segments with 50% overlap
          seg_len = fix( (x_len-3)*2/9 );
        end
        %% make Hamming window (don't depend on sigproc)
        xx = seg_len - 1;
        window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
        end
      if ( isempty(Nfft) )
        Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
      end
    %%
    %% Matlab R14 psd(spectrum.welch) defaults
    elseif ( compatib==4 )
      if ( is_win > 1 )
        %% window arg provides window function
        seg_len = length(window);
      else
        %% window arg does not provide window function; use Hamming
        if ( is_win )
          %% window arg is scalar
          seg_len = window;
        else
          %% window arg not available; use default seg_len = 64
          seg_len = 64;
        end
        %% make Hamming window (don't depend on sigproc)
        xx = seg_len - 1;
        window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
        end
      %% Now we know segment length,
      %% so we can set default overlap as number of samples
      if ( ~isempty(overlap) )
        overlap = fix(seg_len * overlap / 100 );
        end
      if ( isempty(Nfft) )
        Nfft = max( 256, 2^ceil(log(seg_len)*nearly_one/log_two) );
      end
    %%
    %% default compatibility level
    else %if ( compatib==1 )
      %% calculate/adjust segment length, window function
      if ( is_win > 1 )
        %% window arg provides window function
        seg_len = length(window);
      else
        %% window arg does not provide window function; use Hamming
        if ( is_win )       %% window arg is scalar
          seg_len = window;
        else
          %% window arg not available; use default length:
          %% = sqrt(length(x)) rounded up to nearest integer power of 2
          if ( isempty(overlap) )
            overlap=0.5;
          end
          seg_len = 2 ^ ceil( log(sqrt(x_len/(1-overlap)))*nearly_one/log_two );
        end
        %% make Hamming window (don't depend on sigproc)
        xx = seg_len - 1;
        window = 0.54 - 0.46 * cos( (2*pi/xx)*[0:xx].' );
        end
      %% Now we know segment length,
      %% so we can set default overlap as number of samples
      if ( ~isempty(overlap) )
        overlap = fix(seg_len * overlap);
        end
      %%
      %% calculate FFT length
      if ( isempty(Nfft) )
        Nfft = seg_len;
      end
      if ( is_sloppy )
        Nfft = 2 ^ ceil( log(Nfft) * nearly_one / log_two );
      end
    end
    %% end of compatibility options
    %%
    %% minimum FFT length is seg_len
    Nfft = max( Nfft, seg_len );
    %% Mean square of window is required for normalising PSD amplitude.
    win_meansq = (window.' * window) / seg_len;
    %%
    %% Set default or check overlap.
    if ( isempty(overlap) )
      overlap = fix(seg_len /2);
    elseif ( overlap >= seg_len )
      error( 'pwelch: arg (overlap=%d) too big. Must be <length(window)=%d',...
             overlap, seg_len );
    end
    %%
    %% Pad data with zeros if shorter than segment. This should not happen.
    if ( x_len < seg_len )
      x = [x; zeros(seg_len-x_len,1)];
      if ( arg2_is_y )
        y = [y; zeros(seg_len-x_len,1)];
        end
      x_len = seg_len;
      end
    %% end SETUP REMAINING PARAMETERS
    %%
    %% 
    %% MAIN CALCULATIONS
    %% Remove mean from the data
    if ( rm_mean == 3 )
      n_ffts = max( 0, fix( (x_len-seg_len)/(seg_len-overlap) ) ) + 1;
      x_len  = min( x_len, (seg_len-overlap)*(n_ffts-1)+seg_len );
      if ( need_Pxx || need_Pxy )
        x = x - sum( x(1:x_len) ) / x_len;
      end
      if ( arg2_is_y || need_Pxy)
        y = y - sum( y(1:x_len) ) / x_len;
      end
    end
    %%
    %% Calculate and accumulate periodograms
    %%   xx and yy are padded data segments
    %%   Pxx, Pyy, Pyy are periodogram sums, Vxx is for confidence interval
    xx = zeros(Nfft,1);
    yy = xx;
    Pxx = xx;
    Pxy = xx;
    Pyy = xx;
    if ( conf>0 )
      Vxx = xx;
    else
      Vxx = [];
    end
    n_ffts = 0;
    for start_seg = [1:seg_len-overlap:x_len-seg_len+1]
      end_seg = start_seg+seg_len-1;
      %% Don't truncate/remove the zero padding in xx and yy
      if ( need_Pxx || need_Pxy )
        if ( rm_mean==1 ) % remove mean from segment
          xx(1:seg_len) = window .* ( ...
            x(start_seg:end_seg) - sum(x(start_seg:end_seg)) / seg_len);
        elseif ( rm_mean == 2 ) % remove linear trend from segment
          xx(1:seg_len) = window .* detrend( x(start_seg:end_seg) );
        else % rm_mean==0 or 3
          xx(1:seg_len) = window .* x(start_seg:end_seg);
        end
        fft_x = fft(xx);
      end
      if ( need_Pxy || need_Pyy )
        if ( rm_mean==1 ) % remove mean from segment
          yy(1:seg_len) = window .* ( ...
            y(start_seg:end_seg) - sum(y(start_seg:end_seg)) / seg_len);
        elseif ( rm_mean == 2 ) % remove linear trend from segment
          yy(1:seg_len) = window .* detrend( y(start_seg:end_seg) );
        else % rm_mean==0 or 3
          yy(1:seg_len) = window .* y(start_seg:end_seg);
        end
        fft_y = fft(yy);
      end
      if ( need_Pxx )
        %% force Pxx to be real; pgram = periodogram
        pgram = real(fft_x .* conj(fft_x));
        Pxx = Pxx + pgram;
        %% sum of squared periodograms is required for confidence interval
        if ( conf>0 )
          Vxx = Vxx + pgram .^2;
          end
      end
      if ( need_Pxy )
        %% Pxy (cross power spectrum) is complex. Do not force to be real.
        Pxy = Pxy + fft_y .* conj(fft_x);
      end
      if ( need_Pyy )
        %% force Pyy to be real
        Pyy = Pyy + real(fft_y .* conj(fft_y));
      end
      n_ffts = n_ffts +1;
    end
    %%
    %% Calculate confidence interval
    %%    -- incorrectly assumes that the periodogram has Gaussian probability
    %%       distribution (actually, it has a single-sided (e.g. exponential)
    %%       distribution.
    %% Sample variance of periodograms is (Vxx-Pxx.^2/n_ffts)/(n_ffts-1).
    %%    This method of calculating variance is more susceptible to round-off
    %%  error, but is quicker, and for double-precision arithmetic and the
    %%  inherently noisy periodogram (variance==mean^2), it should be OK.
    if ( conf>0 && need_Pxx )
      if ( n_ffts<2 )
        Vxx = zeros(Nfft,1);
      else
        %% Should use student distribution here (for unknown variance), but tinv
        %% is not a core Matlab function (is in statistics toolbox. Grrr)
        Vxx = (erfinv(conf)*sqrt(2*n_ffts/(n_ffts-1))) * sqrt(Vxx-Pxx.^2/n_ffts);
      end
    end
    %%
    %% Convert two-sided spectra to one-sided spectra (if range == 0).
    %% For one-sided spectra, contributions from negative frequencies are added 
    %% to the positive side of the spectrum -- but not at zero or Nyquist
    %% (half sampling) frequencies.  This keeps power equal in time and spectral
    %% domains, as required by Parseval theorem.
    %%
    if ( range == 0 )
      if ( ~ rem(Nfft,2) )    %% one-sided, Nfft is even
        psd_len = Nfft/2+1;
        if ( need_Pxx )
          Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1); 0];
          if ( conf>0 )
            Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1); 0];
          end
        end
        if ( need_Pxy )
          Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1); 0]);
        end
        if ( need_Pyy )
          Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1); 0];
        end
      else                    %% one-sided, Nfft is odd
        psd_len = (Nfft+1)/2;
        if ( need_Pxx )
          Pxx = Pxx(1:psd_len) + [0; Pxx(Nfft:-1:psd_len+1)];
          if ( conf>0 )
            Vxx = Vxx(1:psd_len) + [0; Vxx(Nfft:-1:psd_len+1)];
          end
        end
        if ( need_Pxy )
          Pxy = Pxy(1:psd_len) + conj([0; Pxy(Nfft:-1:psd_len+1)]);
        end
        if ( need_Pyy )
          Pyy = Pyy(1:psd_len) + [0; Pyy(Nfft:-1:psd_len+1)];
        end
      end
    else                      %% two-sided (and shifted)
      psd_len = Nfft;
    end
    %% end MAIN CALCULATIONS
    %%
    %% SCALING AND OUTPUT
    %% Put all results in matrix, one row per spectrum
    %%   Pxx, Pxy, Pyy are sums of periodograms, so "n_ffts"
    %%   in the scale factor converts them into averages
    spectra    = zeros(psd_len,n_results);
    spect_type = zeros(n_results,1);
    scale = n_ffts * seg_len * Fs * win_meansq;
    if ( do_power )
      spectra(:,do_power) = Pxx / scale;
      spect_type(do_power) = 1;
      if ( conf>0 )
        Vxx = [Pxx-Vxx Pxx+Vxx]/scale;
      end
    end
    if ( do_cross )
      spectra(:,do_cross) = Pxy / scale;
      spect_type(do_cross) = 2;
    end
    if ( do_trans )
      spectra(:,do_trans) = Pxy ./ Pxx;
      spect_type(do_trans) = 3;
    end
    if ( do_coher )
      %% force coherence to be real
      spectra(:,do_coher) = real(Pxy .* conj(Pxy)) ./ Pxx ./ Pyy;
      spect_type(do_coher) = 4;
    end
    if ( do_ypower )
      spectra(:,do_ypower) = Pyy / scale;
      spect_type(do_ypower) = 5;
    end
    freq = [0:psd_len-1].' * ( Fs / Nfft );
    %%
    %% range='shift': Shift zero-frequency to the middle
    if ( range == 2 )
      len2 = fix((Nfft+1)/2);
      spectra = [ spectra(len2+1:Nfft,:); spectra(1:len2,:)];
      freq    = [ freq(len2+1:Nfft)-Fs; freq(1:len2)];
      if ( conf>0 )
        Vxx = [ Vxx(len2+1:Nfft,:); Vxx(1:len2,:)];
      end
    end
    %%
    %%  RETURN RESULTS or PLOT
    if ( nargout>=2 && conf>0 )
      varargout{2} = Vxx;
    end
    if ( nargout>=(2+(conf>0)) )
      %% frequency is 2nd or 3rd return value,
      %% depends on if 2nd is confidence interval
      varargout{2+(conf>0)} = freq;
    end
    if ( nargout>=1 )
      varargout{1} = spectra;
    else
      %%
      %% Plot the spectra if there are no return variables.
      plot_title=['power spectrum x ';
                  'cross spectrum   ';
                  'transfer function';
                  'coherence        ';
                  'power spectrum y ' ];
      for ii = 1: n_results
        if ( conf>0 && spect_type(ii)==1 )
          Vxxxx = Vxx;
        else
          Vxxxx = [];
        end
        if ( n_results > 1 )
          figure();
          end
        if ( plot_type == 1 )
          plot(freq,[abs(spectra(:,ii)) Vxxxx]);
        elseif ( plot_type == 2 )
          semilogx(freq,[abs(spectra(:,ii)) Vxxxx]);
        elseif ( plot_type == 3 )
          semilogy(freq,[abs(spectra(:,ii)) Vxxxx]);
        elseif ( plot_type == 4 )
          loglog(freq,[abs(spectra(:,ii)) Vxxxx]);
        elseif ( plot_type == 5 )  % db
          ylabel( 'amplitude (dB)' );
          plot(freq,[10*log10(abs(spectra(:,ii))) 10*log10(abs(Vxxxx))]);
        end
        title( char(plot_title(spect_type(ii),:)) );
        ylabel( 'amplitude' );
        %% Plot phase of cross spectrum and transfer function
        if ( spect_type(ii)==2 || spect_type(ii)==3 )
          figure();
          if ( plot_type==2 || plot_type==4 )
            semilogx(freq,180/pi*angle(spectra(:,ii)));
          else
            plot(freq,180/pi*angle(spectra(:,ii)));
          end
          title( char(plot_title(spect_type(ii),:)) );
          ylabel( 'phase' );
        end
      end %for
    end 
  end
end

%!demo
%! fflush(stdout);
%! rand('seed',2038014164);
%! a = [ 1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746 ];
%! white = rand(1,16384);
%! signal = detrend(filter(0.70181,a,white));
%! % frequency shift by modulating with exp(j.omega.t) 
%! skewed = signal.*exp(2*pi*i*2/25*[1:16384]);
%! Fs = 25; % sampling frequency
%! hold off
%! pwelch([]);
%! pwelch(signal);
%! disp('Default settings: Fs=1Hz, overlap=0.5, no padding' )
%! input('Onesided power spectral density (real data). Press ENTER', 's' );
%! hold on
%! pwelch(skewed);
%! disp('Frequency-shifted complex data.  Twosided wrap-around spectrum.' );
%! input('Area is same as one-sided spectrum. Press ENTER', 's' );
%! pwelch(signal,'shift','semilogy');
%! input('Twosided, centred zero-frequency, lin-log plot. Press ENTER', 's' );
%! hold off
%! figure();
%! pwelch(skewed,[],[],[],Fs,'shift','semilogy');
%! input('Actual Fs=25 Hz. Note change of scales. Press ENTER', 's' );
%! pwelch(skewed,[],[],[],Fs,0.95,'shift','semilogy');
%! input('Spectral density with 95% confidence interval. Press ENTER', 's' );
%! pwelch('R12+');
%! pwelch(signal,'squared');
%! input('Spectral density with Matlab R12 defaults. Press ENTER', 's' );
%! figure();
%! pwelch([]);
%! pwelch(signal,3640,[],4096,2*pi,[],'no-strip');
%! input('Same spectrum with 95% confidence interval. Press ENTER', 's' );
%! figure();
%! pwelch(signal,[],[],[],2*pi,0.95,'no-strip');
%! input('95% confidence interval with native defaults. Press ENTER', 's' );
%! pwelch(signal,64,[],[],2*pi,'no-strip');
%! input('Only 32 frequency values in this spectrum. Press ENTER', 's' );
%! hold on
%! pwelch(signal,64,[],256,2*pi,'no-strip');
%! input('4:1 zero padding gives artificial smoothing. Press ENTER', 's' );
%! figure();
%! pwelch('psd');
%! pwelch(signal,'squared');
%! input('Just like Matlab spectrum.welch(...) defaults. Press ENTER', 's' );
%! hold off
%! pwelch({});
%! pwelch(white,signal,'trans','coher','short')
%! input('Transfer and coherence functions. Press ENTER', 's' );
%! disp('Use "close all" to remove plotting windows.' );