/usr/share/octave/packages/signal-1.2.2/pyulear.m is in octave-signal 1.2.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | %% Copyright (C) 2006 Peter V. Lanspeary <pvl@mecheng.adelaide.edu.au>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.
%% usage:
%% [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type)
%%
%% Calculates a Yule-Walker autoregressive (all-pole) model of the data "x"
%% and computes the power spectrum of the model. This is a wrapper for
%% functions "aryule" and "ar_psd" which perform the argument checking.
%% See "help aryule" and "help ar_psd" for further details.
%%
%% ARGUMENTS:
%% All but the first two arguments are optional and may be empty.
%% x %% [vector] sampled data
%%
%% poles %% [integer scalar] required number of poles of the AR model
%%
%% freq %% [real vector] frequencies at which power spectral density
%% %% is calculated
%% %% [integer scalar] number of uniformly distributed frequency
%% %% values at which spectral density is calculated.
%% %% [default=256]
%%
%% Fs %% [real scalar] sampling frequency (Hertz) [default=1]
%%
%%
%% CONTROL-STRING ARGUMENTS -- each of these arguments is a character string.
%% Control-string arguments can be in any order after the other arguments.
%%
%%
%% range %% 'half', 'onesided' : frequency range of the spectrum is
%% %% from zero up to but not including sample_f/2. Power
%% %% from negative frequencies is added to the positive
%% %% side of the spectrum.
%% %% 'whole', 'twosided' : frequency range of the spectrum is
%% %% -sample_f/2 to sample_f/2, with negative frequencies
%% %% stored in "wrap around" order after the positive
%% %% frequencies; e.g. frequencies for a 10-point 'twosided'
%% %% spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1
%% %% 'shift', 'centerdc' : same as 'whole' but with the first half
%% %% of the spectrum swapped with second half to put the
%% %% zero-frequency value in the middle. (See "help
%% %% fftshift". If "freq" is vector, 'shift' is ignored.
%% %% If model coefficients "ar_coeffs" are real, the default
%% %% range is 'half', otherwise default range is 'whole'.
%%
%% method %% 'fft': use FFT to calculate power spectrum.
%% %% 'poly': calculate power spectrum as a polynomial of 1/z
%% %% N.B. this argument is ignored if the "freq" argument is a
%% %% vector. The default is 'poly' unless the "freq"
%% %% argument is an integer power of 2.
%%
%% plot_type %% 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':
%% %% specifies the type of plot. The default is 'plot', which
%% %% means linear-linear axes. 'squared' is the same as 'plot'.
%% %% 'dB' plots "10*log10(psd)". This argument is ignored and a
%% %% spectrum is not plotted if the caller requires a returned
%% %% value.
%%
%% RETURNED VALUES:
%% If return values are not required by the caller, the spectrum
%% is plotted and nothing is returned.
%% psd %% [real vector] power-spectrum estimate
%% f_out %% [real vector] frequency values
%%
%% HINTS
%% This function is a wrapper for aryule and ar_psd.
%% See "help aryule", "help ar_psd".
function [psd,f_out]=pyulear(x,poles,varargin)
%%
if ( nargin<2 )
error( 'pburg: need at least 2 args. Use "help pburg"' );
end
%%
[ar_coeffs,residual,k]=aryule(x,poles);
if ( nargout==0 )
ar_psd(ar_coeffs,residual,varargin{:});
elseif ( nargout==1 )
psd = ar_psd(ar_coeffs,residual,varargin{:});
elseif ( nargout>=2 )
[psd,f_out] = ar_psd(ar_coeffs,residual,varargin{:});
end
end
%!demo
%! fflush(stdout);
%! rand('seed',2038014164);
%! a = [ 1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746 ];
%! signal = detrend(filter(0.70181,a,rand(1,16384)));
%! % frequency shift by modulating with exp(j.omega.t)
%! skewed = signal.*exp(2*pi*i*2/25*[1:16384]);
%! Fs = 25;
%! hold on
%! pyulear(signal,3,[],Fs);
%! disp( 'Results from this demo should be nearly the same as pburg demo' );
%! input('Onesided 3-pole spectrum. Press ENTER', 's' );
%! pyulear(signal,4,[],Fs,'whole');
%! input('Twosided 4-pole spectrum of same data. Press ENTER', 's' );
%! pyulear(signal,5,128,Fs,'shift', 'semilogy');
%! input('Twosided, centred zero-frequency, 5-pole. Press ENTER', 's' );
%! pyulear(skewed,7,128,Fs,'shift','semilogy');
%! input('Complex data, frequency-shifted. Press ENTER', 's' );
%! user_freq=[-0.2:0.02:0.2]*Fs;
%! pyulear(skewed,7,user_freq,Fs,'semilogy');
%! input('User-specified frequency values. Press ENTER', 's' );
%! hold off
%! clf
|