This file is indexed.

/usr/share/octave/packages/signal-1.2.2/sftrans.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
## Copyright (C) 1999-2001 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
##
## Transform band edges of a generic lowpass filter (cutoff at W=1)
## represented in splane zero-pole-gain form.  W is the edge of the
## target filter (or edges if band pass or band stop). Stop is true for
## high pass and band stop filters or false for low pass and band pass
## filters. Filter edges are specified in radians, from 0 to pi (the
## nyquist frequency).
##
## Theory: Given a low pass filter represented by poles and zeros in the
## splane, you can convert it to a low pass, high pass, band pass or 
## band stop by transforming each of the poles and zeros individually.
## The following table summarizes the transformation:
##
## Transform         Zero at x                  Pole at x
## ----------------  -------------------------  ------------------------
## Low Pass          zero: Fc x/C               pole: Fc x/C
## S -> C S/Fc       gain: C/Fc                 gain: Fc/C 
## ----------------  -------------------------  ------------------------
## High Pass         zero: Fc C/x               pole: Fc C/x
## S -> C Fc/S       pole: 0                    zero: 0
##                   gain: -x                   gain: -1/x
## ----------------  -------------------------  ------------------------
## Band Pass         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
##        S^2+FhFl   pole: 0                    zero: 0
## S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
##        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
## Band Stop         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
##        S(Fh-Fl)   pole: ±sqrt(-FhFl)         zero: ±sqrt(-FhFl)
## S -> C --------   gain: -x                   gain: -1/x
##        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
## Bilinear          zero: (2+xT)/(2-xT)        pole: (2+xT)/(2-xT)
##      2 z-1        pole: -1                   zero: -1
## S -> - ---        gain: (2-xT)/T             gain: (2-xT)/T
##      T z+1
## ----------------  -------------------------  ------------------------
##
## where C is the cutoff frequency of the initial lowpass filter, Fc is
## the edge of the target low/high pass filter and [Fl,Fh] are the edges
## of the target band pass/stop filter.  With abundant tedious algebra,
## you can derive the above formulae yourself by substituting the
## transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a
## pole at x, and converting the result into the form:
##
##    H(S)=g prod(S-Xi)/prod(S-Xj)
##
## The transforms are from the references.  The actual pole-zero-gain
## changes I derived myself.
##
## Please note that a pole and a zero at the same place exactly cancel.
## This is significant for High Pass, Band Pass and Band Stop filters
## which create numerous extra poles and zeros, most of which cancel.
## Those which do not cancel have a "fill-in" effect, extending the 
## shorter of the sets to have the same number of as the longer of the
## sets of poles and zeros (or at least split the difference in the case
## of the band pass filter).  There may be other opportunistic
## cancellations but I will not check for them.
##
## Also note that any pole on the unit circle or beyond will result in
## an unstable filter.  Because of cancellation, this will only happen
## if the number of poles is smaller than the number of zeros and the
## filter is high pass or band pass.  The analytic design methods all
## yield more poles than zeros, so this will not be a problem.
## 
## References: 
##
## Proakis & Manolakis (1992). Digital Signal Processing. New York:
## Macmillan Publishing Company.

function [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)

  if (nargin != 5)
    print_usage;
  end

  C = 1;
  p = length(Sp);
  z = length(Sz);
  if z > p || p == 0
    error("sftrans: must have at least as many poles as zeros in s-plane");
  end

  if length(W)==2
    Fl = W(1);
    Fh = W(2);
    if stop
## ----------------  -------------------------  ------------------------
## Band Stop         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
##        S(Fh-Fl)   pole: ±sqrt(-FhFl)         zero: ±sqrt(-FhFl)
## S -> C --------   gain: -x                   gain: -1/x
##        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
      if (isempty(Sz))
        Sg = Sg * real (1./ prod(-Sp));
      elseif (isempty(Sp))
        Sg = Sg * real(prod(-Sz));
      else
        Sg = Sg * real(prod(-Sz)/prod(-Sp));
      endif
      b = (C*(Fh-Fl)/2)./Sp;
      Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
      extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)];
      if isempty(Sz)
        Sz = [extend(1+rem([1:2*p],2))];
      else
        b = (C*(Fh-Fl)/2)./Sz;
        Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
        if (p > z)
          Sz = [Sz, extend(1+rem([1:2*(p-z)],2))];
        end
      end
    else
## ----------------  -------------------------  ------------------------
## Band Pass         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
##        S^2+FhFl   pole: 0                    zero: 0
## S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
##        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
      Sg = Sg * (C/(Fh-Fl))^(z-p);
      b = Sp*((Fh-Fl)/(2*C));
      Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
      if isempty(Sz)
        Sz = zeros(1,p);
      else
        b = Sz*((Fh-Fl)/(2*C));
        Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
        if (p>z)
          Sz = [Sz, zeros(1, (p-z))];
        end
      end
    end
  else
    Fc = W;
    if stop
## ----------------  -------------------------  ------------------------
## High Pass         zero: Fc C/x               pole: Fc C/x
## S -> C Fc/S       pole: 0                    zero: 0
##                   gain: -x                   gain: -1/x
## ----------------  -------------------------  ------------------------
      if (isempty(Sz))
        Sg = Sg * real (1./ prod(-Sp));
      elseif (isempty(Sp))
        Sg = Sg * real(prod(-Sz));
      else
        Sg = Sg * real(prod(-Sz)/prod(-Sp));
      endif
      Sp = C * Fc ./ Sp;
      if isempty(Sz)
        Sz = zeros(1,p);
      else
        Sz = [C * Fc ./ Sz];
        if (p > z)
          Sz = [Sz, zeros(1,p-z)];
        end
      end
    else
## ----------------  -------------------------  ------------------------
## Low Pass          zero: Fc x/C               pole: Fc x/C
## S -> C S/Fc       gain: C/Fc                 gain: Fc/C 
## ----------------  -------------------------  ------------------------
      Sg = Sg * (C/Fc)^(z-p);
      Sp = Fc * Sp / C;
      Sz = Fc * Sz / C;
    end
  end
endfunction