This file is indexed.

/usr/share/octave/packages/signal-1.2.2/zplane.m is in octave-signal 1.2.2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
## Copyright (C) 1999, 2001 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2004 Stefan van der Walt <stefan@sun.ac.za>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: zplane(b [, a]) or zplane(z [, p])
##
## Plot the poles and zeros.  If the arguments are row vectors then they
## represent filter coefficients (numerator polynomial b and denominator
## polynomial a), but if they are column vectors or matrices then they
## represent poles and zeros.
##
## This is a horrid interface, but I didn't choose it; better would be
## to accept b,a or z,p,g like other functions.  The saving grace is
## that poly(x) always returns a row vector and roots(x) always returns
## a column vector, so it is usually right.  You must only be careful
## when you are creating filters by hand.
##
## Note that due to the nature of the roots() function, poles and zeros
## may be displayed as occurring around a circle rather than at a single
## point.
##
## The transfer function is
##                         
##        B(z)   b0 + b1 z^(-1) + b2 z^(-2) + ... + bM z^(-M)
## H(z) = ---- = --------------------------------------------
##        A(z)   a0 + a1 z^(-1) + a2 z^(-2) + ... + aN z^(-N)
##
##               b0          (z - z1) (z - z2) ... (z - zM)
##             = -- z^(-M+N) ------------------------------
##               a0          (z - p1) (z - p2) ... (z - pN)
##
## The denominator a defaults to 1, and the poles p defaults to [].

## TODO: Consider a plot-like interface:
## TODO:       zplane(x1,y1,fmt1,x2,y2,fmt2,...)
## TODO:    with y_i or fmt_i optional as usual.  This would allow
## TODO:    legends and control over point colour and filters of
## TODO:    different orders.
function zplane(z, p = [])

  if (nargin < 1 || nargin > 2)
    print_usage;
  end
  if columns(z)>1 || columns(p)>1
    if rows(z)>1 || rows(p)>1
      ## matrix form: columns are already zeros/poles
    else
      ## z -> b
      ## p -> a      
      if isempty(z), z=1; endif
      if isempty(p), p=1; endif
          
      M = length(z) - 1;
      N = length(p) - 1;
      z = [ roots(z); zeros(N - M, 1) ];
      p = [ roots(p); zeros(M - N, 1) ];
    endif
  endif


  xmin = min([-1; real(z(:)); real(p(:))]);
  xmax = max([ 1; real(z(:)); real(p(:))]);
  ymin = min([-1; imag(z(:)); imag(p(:))]);
  ymax = max([ 1; imag(z(:)); imag(p(:))]);
  xfluff = max([0.05*(xmax-xmin), (1.05*(ymax-ymin)-(xmax-xmin))/10]);
  yfluff = max([0.05*(ymax-ymin), (1.05*(xmax-xmin)-(ymax-ymin))/10]);
  xmin = xmin - xfluff;
  xmax = xmax + xfluff;
  ymin = ymin - yfluff;
  ymax = ymax + yfluff;

  text();
  plot_with_labels(z, "o");
  plot_with_labels(p, "x");
  refresh;

  r = exp(2i*pi*[0:100]/100);
  plot(real(r), imag(r),'k'); hold on;
  axis equal;
  grid on;
  axis(1.05*[xmin, xmax, ymin, ymax]);
  if (!isempty(p))
    h = plot(real(p), imag(p), "bx");
    set (h, 'MarkerSize', 7);
  endif
  if (!isempty(z)) 
    h = plot(real(z), imag(z), "bo");
    set (h, 'MarkerSize', 7);
  endif
  hold off;
endfunction

function plot_with_labels(x, symbol)
  if ( !isempty(x) )

    x_u = unique(x(:));
    
    for i = 1:length(x_u)
      n = sum(x_u(i) == x(:));
      if (n > 1)
        text(real(x_u(i)), imag(x_u(i)), [" " num2str(n)]);
       endif
    endfor
    
    col = "rgbcmy";
    for c = 1:columns(x)
      plot(real( x(:,c) ), imag( x(:,c) ), [col(mod(c,6)),symbol ";;"]);
    endfor
    
  endif
endfunction

%!demo
%! ## construct target system:
%! ##   symmetric zero-pole pairs at r*exp(iw),r*exp(-iw)
%! ##   zero-pole singletons at s
%! pw=[0.2, 0.4, 0.45, 0.95];   #pw = [0.4];
%! pr=[0.98, 0.98, 0.98, 0.96]; #pr = [0.85];
%! ps=[];
%! zw=[0.3];  # zw=[];
%! zr=[0.95]; # zr=[];
%! zs=[];
%! 
%! ## system function for target system
%! p=[[pr, pr].*exp(1i*pi*[pw, -pw]), ps]';
%! z=[[zr, zr].*exp(1i*pi*[zw, -zw]), zs]';
%! M = length(z); N = length(p);
%! sys_a = [ zeros(1, M-N), real(poly(p)) ];
%! sys_b = [ zeros(1, N-M), real(poly(z)) ];
%! disp("The first two graphs should be identical, with poles at (r,w)=");
%! disp(sprintf(" (%.2f,%.2f)", [pr ; pw]));
%! disp("and zeros at (r,w)=");
%! disp(sprintf(" (%.2f,%.2f)", [zr ; zw]));
%! disp("with reflection across the horizontal plane");
%! subplot(231); title("transfer function form"); zplane(sys_b, sys_a);
%! subplot(232); title("pole-zero form"); zplane(z,p);
%! subplot(233); title("empty p"); zplane(z); 
%! subplot(234); title("empty a"); zplane(sys_b);
%! disp("The matrix plot has 2 sets of points, one inside the other");
%! subplot(235); title("matrix"); zplane([z, 0.7*z], [p, 0.7*p]);