This file is indexed.

/usr/share/doc/octave-symbolic/symbolic.html is in octave-symbolic 1.1.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
   <meta name="GENERATOR" content="Mozilla/4.75C-SGI [en] (X11; U; IRIX 6.5 IP22) [Netscape]">
</head>
<body text="#000000" bgcolor="#FFFFFF" link="#0000FF" vlink="#FF0000" alink="#000088">
<font size=+2>Octave Symbolic Manipulation Toolbox</font>
<p>The Octave Symbolic Manipulation Toolbox is based upon&nbsp; <a href="http://www.ginac.de">GiNaC</a>
.&nbsp;&nbsp; The goal is to simply provide the capabilities of GiNaC in
the easy to use environment provided by Octave.
<p><font size=+1>Limitations/Features</font>
<br>Currently there is no support for symbolic matrices. I think it would
require a few changes to the parser to do it nicely: for example:&nbsp;
sym_matrix = [x+1, x+5; x^2+4,x^2+2*x+1];&nbsp; I could make a function
like sym_matrix(the_rows,the_columns,x+1, ... )&nbsp; that returned a symbolic
matrix but this would be a bit of a kludge.
<p>In order to do exact arithmetic you need to deal with strings and the
vpa command.&nbsp; For example:&nbsp; vpa("1")/vpa("7") is represented
internally as exactly 1/7.&nbsp;&nbsp; However,&nbsp; vpa("1")/7 or 1/vpa("7")&nbsp;
is an approximation to 1/7 that is accurate to roughly the accuracy of
the current value of digits.
<p>GiNaC throws exceptions when there are problems with computations.&nbsp;&nbsp;
I handle some of them at this time, but I do not handle all of them.&nbsp;&nbsp;
This can cause octave to terminate prematurely.&nbsp;&nbsp; For example,
try vpa("1")/vpa("0").&nbsp;&nbsp; This will eventually be fixed.
<p><font size=+1>Download and install</font>
<p>You will need to install cln-1.0.1, GiNaC-0.8.0 and octave-2.1.33 or
later to use this package.&nbsp; You may be able to get by with an earlier
version of octave if you compiled without the "-fno-rtti -fno-exceptions"
options.&nbsp;&nbsp; This package uses both exceptions and run-time type
identification.&nbsp;&nbsp;&nbsp; There is an INSTALL file in the package
which will tell you how to install the package.
<p><font size=+1>Functions</font>
<br>Below I provide a list of function that I have implemented or have
plans to implement as of the latest release .&nbsp; If the function name
is <font color="#009900">green</font><font color="#330000"> </font><font color="#000000">then
the function is implemented and to the best of my knowledge there are no
problems with it.&nbsp; If the function is </font><font color="#CC0000">red
</font><font color="#000000">then it has not been implemented yet.&nbsp;
If the function is </font><font color="#000099">blue</font><font color="#000000">
then it has been implemented but is known not to work correctly.&nbsp;
Blues will appear only very rarely.</font>
<ul>
<li>
<font color="#009900">vpa</font>&nbsp; - create a variable precision arithmetic
variable from a string, double, or an appropriate expression.</li>

<li>
<font color="#009900">sym</font>&nbsp; - create a symbolic variable</li>

<li>
<font color="#009900">is_vpa</font>&nbsp; - returns true if an object is
a vpa object</li>

<li>
<font color="#009900">is_sym</font>&nbsp; - return true if the argument
is a symbolic variable</li>

<li>
<font color="#009900">is_ex</font>&nbsp; - returns true if an object a
symbolic expression (i.e.&nbsp; x+y)</li>

<li>
<font color="#009900">to_double</font>&nbsp; - convert a vpa, ex or string
to a double value.</li>

<li>
<font color="#009900">to_char</font>&nbsp; - convert a vpa, ex to a string.</li>

<li>
<font color="#009900">digits</font>&nbsp; - set or view the number of digits
that newly created vpa object should have</li>

<li>
<font color="#CC0000">Abs</font>&nbsp; - Absolute value</li>

<li>
<font color="#CC0000">csgn</font>&nbsp; -</li>

<li>
<font color="#CC0000">Sqrt</font>&nbsp; - Sqrt(x)&nbsp; => x^(vpa(1)/2)
or x^(1/vpa(2))</li>

<li>
<font color="#009900">Cos</font>&nbsp; - the cosine of a sym, vpa , or
ex variable</li>

<li>
<font color="#009900">Sin</font> - the sine of a sym, vpa , or ex variable</li>

<li>
<font color="#009900">Tan</font> - the tangent of a sym, vpa , or ex variable</li>

<li>
<font color="#009900">aCos</font>&nbsp; - the inverse cosine of a sym,
vpa , or ex variable</li>

<li>
<font color="#009900">aSin</font>&nbsp; - the inverse sin of a sym, vpa
, or ex variable</li>

<li>
<font color="#009900">aTan</font>&nbsp; - the inverse tangent of a sym,
vpa , or ex variable</li>

<li>
<font color="#CC0000">aTan2</font>&nbsp; -</li>

<li>
<font color="#009900">Cosh</font>&nbsp; - the hyperbolic cosine of a sym,
vpa , or ex variable</li>

<li>
<font color="#009900">Sinh</font>&nbsp; - the hyperbolic sine of a sym,
vpa , or ex variable</li>

<li>
<font color="#009900">Tanh</font>&nbsp; - the hyperbolic tangent of a sym,
vpa , or ex variable</li>

<li>
<font color="#009900">aCosh</font> - the inverse hyperbolic cosine of a
sym, vpa , or ex variable</li>

<li>
<font color="#009900">aSinh</font> - the inverse hyperbolic sine of a sym,
vpa , or ex variable</li>

<li>
<font color="#009900">aTanh</font>&nbsp; - the inverse hyperbolic tangent
of a sym, vpa , or ex variable</li>

<li>
<font color="#009900">Exp</font>&nbsp; - the cosine of a sym, vpa , or
ex variable</li>

<li>
<font color="#009900">Log</font>&nbsp; - the cosine of a sym, vpa , or
ex variable</li>

<li>
<font color="#CC0000">Zeta</font>&nbsp; -</li>

<li>
<font color="#CC0000">Tgamma</font>&nbsp; -</li>

<li>
<font color="#CC0000">Lgamma</font>&nbsp; -</li>

<li>
<font color="#CC0000">Beta</font>&nbsp; -</li>

<li>
<font color="#CC0000">Factorial</font>&nbsp; -</li>

<li>
<font color="#CC0000">Binomial</font>&nbsp; -</li>

<li>
<font color="#CC0000">Order</font> -</li>

<li>
<font color="#009900">subs</font> - perform a substitution in an expression</li>

<li>
<font color="#009900">differentiate</font>&nbsp; - differentiate an expression</li>

<li>
<font color="#009900">expand</font>&nbsp; -&nbsp; multiply all of the terms
in an expression out:&nbsp; (x+y)*(x+z) => x^2+x*y+x*z+y*z</li>

<li>
<font color="#009900">collect</font>&nbsp; - collect similar terms in an
already expanded expression</li>

<li>
<font color="#009900">coeff</font>&nbsp; - return the nth coefficient in
a polynomial</li>

<li>
<font color="#009900">lcoeff</font>&nbsp; - leading coefficient of a polynomial
(4x^2+2x+5 => 4)</li>

<li>
<font color="#009900">tcoeff</font>&nbsp; - trailing coefficient of a polynomial
(4x^2+2x+5 => 5)</li>

<li>
<font color="#009900">degree</font>&nbsp; - The degree of a polynomial
(i.e. x^2+2x+1 => 2)</li>

<li>
<font color="#009900">ldegree</font>&nbsp; - The low degree of a polynomial
(i.e. x^2+2x+1&nbsp; => 0)</li>

<li>
<font color="#009900">quotient</font>&nbsp; -</li>

<li>
<font color="#009900">remainder</font>&nbsp; -</li>

<li>
<font color="#009900">premainder</font>&nbsp; -</li>

<li>
<font color="#CC0000">unit</font>&nbsp; -</li>

<li>
<font color="#CC0000">content</font>&nbsp; -</li>

<li>
<font color="#CC0000">primpart</font>&nbsp; -</li>

<li>
<font color="#CC0000">Gcd</font>&nbsp; - greatest common denominator of
a polynomial expression</li>

<li>
<font color="#CC0000">Lcm</font>&nbsp; - least common multiple of a polynomial
expression</li>

<li>
<font color="#CC0000">numer</font>&nbsp; -</li>

<li>
<font color="#CC0000">denom</font>&nbsp; -</li>

<li>
normal&nbsp; - ?</li>

<li>
<font color="#CC0000">to_rational</font>&nbsp; -</li>

<li>
<font color="#CC0000">Series</font>&nbsp; -</li>

<li>
<font color="#009900">Pi</font>&nbsp; - pi evaluated to the current value
of digits accuracy.</li>

<li>
<font color="#009900">splot</font>&nbsp; -plot a symbolic functin over
a range of values</li>

<li>
<font color="#CC0000">Saving of expressions, Retrieving of expressions</font></li>
</ul>

</body>
</html>