/usr/share/octave/packages/symbolic-1.1.0/doc-cache is in octave-symbolic 1.1.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | # Created by Octave 3.8.0, Mon Feb 24 19:52:45 2014 UTC <root@panlong>
# name: cache
# type: cell
# rows: 3
# columns: 5
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findsym
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
-- Function File: VARS = findsym (F, N)
Find symbols in expression F and return them comma-separated in
string VARS. The symbols are sorted in alphabetic order. If N is
specified, the N symbols closest to "x" are returned.
Example:
symbols
x = sym ("x");
y = sym ("y");
f = x^2+3*x*y-y^2;
vars = findsym (f);
vars2 = findsym (f,1);
This is intended for m****b compatibility, calls findsymbols().
See also: findsymbols.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Find symbols in expression F and return them comma-separated in string
VARS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poly2sym
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 602
-- Function File: P = poly2sym (C, X)
Creates a symbolic polynomial expression P with coefficients C. If
P is not specified, the free variable is set to sym("x"). C may be
a vector or a cell-array of symbols. X may be a symbolic
expression or a string. The coefficients correspond to decreasing
exponent of the free variable.
Example:
symbols
x = sym("x");
y = sym("y");
p = poly2sym ([2,5,-3]); # p = 2*x^2+5*x-3
c = poly2sym ({2*y,5,-3},x); # p = 2*y*x^2+5*x-3
See also: sym2poly,polyval,roots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Creates a symbolic polynomial expression P with coefficients C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
splot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
-- Function File: splot( F ,X,RANGE)
Plot a symbolic function f(x) over range.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Plot a symbolic function f(x) over range.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sym2poly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 782
-- Function File: C = sym2poly (P, X)
Returns the coefficients of the symbolic polynomial expression P as
a vector. If there is only one free variable in P the coefficient
vector C is a plain numeric vector. If there is more than one free
variable in P, a second argument X specifies the free variable and
the function returns a cell vector of symbolic expressions. The
coefficients correspond to decreasing exponent of the free
variable.
Example:
symbols
x = sym("x");
y = sym("y");
c = sym2poly (x^2+3*x-4); # c = [1,3,-4]
c = sym2poly (x^2+y*x,x); # c = {sym("1"),y,sym("0.0")}
If P is not a polynomial the result has no warranty.
See also: poly2sym,polyval,roots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Returns the coefficients of the symbolic polynomial expression P as a
vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
symfsolve
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1285
-- Function File: [X, INF, MSG] = symfsolve (...)
Solve a set of symbolic equations using 'fsolve'. There are a
number of ways in which this function can be called.
This solves for all free variables, initial values set to 0:
symbols
x=sym("x"); y=sym("y");
f=x^2+3*x-1; g=x*y-y^2+3;
a = symfsolve(f,g);
This solves for x and y and sets the initial values to 1 and 5
respectively:
a = symfsolve(f,g,x,1,y,5);
a = symfsolve(f,g,{x==1,y==5});
a = symfsolve(f,g,[1 5]);
In all the previous examples vector a holds the results: x=a(1),
y=a(2). If initial conditions are specified with variables, the
latter determine output order:
a = symfsolve(f,g,{y==1,x==2}); # here y=a(1), x=a(2)
The system of equations to solve for can be given as separate
arguments or as a single cell-array:
a = symfsolve({f,g},{y==1,x==2}); # here y=a(1), x=a(2)
If the variables are not specified explicitly with the initial
conditions, they are placed in alphabetic order. The system of
equations can be comma- separated or given in a cell-array. The
return-values are those of fsolve; X holds the found roots.
See also: fsolve.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Solve a set of symbolic equations using 'fsolve'.
|