This file is indexed.

/usr/share/octave/packages/symbolic-1.1.0/symfsolve.m is in octave-symbolic 1.1.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
## Copyright (C) 2003 Willem J. Atsma <watsma@users.sf.net>
## 
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
## 
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
## 
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{x}, @var{inf}, @var{msg}] =} symfsolve (@dots{})
## Solve a set of symbolic equations using @command{fsolve}. There are a number of
## ways in which this function can be called.
##
## This solves for all free variables, initial values set to 0:
##
## @example
## symbols
## x=sym("x");   y=sym("y");
## f=x^2+3*x-1;  g=x*y-y^2+3;
## a = symfsolve(f,g);
## @end example
##
## This solves for x and y and sets the initial values to 1 and 5 respectively:
##
## @example
## a = symfsolve(f,g,x,1,y,5);
## a = symfsolve(f,g,@{x==1,y==5@});
## a = symfsolve(f,g,[1 5]);
## @end example
##
## In all the previous examples vector a holds the results: x=a(1), y=a(2).
## If initial conditions are specified with variables, the latter determine
## output order:
##
## @example
## a = symfsolve(f,g,@{y==1,x==2@});  # here y=a(1), x=a(2)
## @end example
##
## The system of equations to solve for can be given as separate arguments or
## as a single cell-array:
##
## @example
## a = symfsolve(@{f,g@},@{y==1,x==2@});  # here y=a(1), x=a(2)
## @end example
##
## If the variables are not specified explicitly with the initial conditions,
## they are placed in alphabetic order. The system of equations can be comma-
## separated or given in a cell-array. The return-values are those of
## fsolve; @var{x} holds the found roots.
## @end deftypefn
## @seealso{fsolve}

function [ x,inf,msg ] = symfsolve (varargin)

  ## separate variables and equations
  eqns = cell();
  vars = cell();

  if iscell(varargin{1})
    if !strcmp(typeinfo(varargin{1}{1}),"ex")
      error("First argument must be (a cell-array of) symbolic expressions.")
    endif
    eqns = varargin{1};
    arg_count = 1;
  else
    arg_count = 0;
    for i=1:nargin
      tmp = disp(varargin{i});
      if( iscell(varargin{i}) || ...
          all(isalnum(tmp) || tmp=="_" || tmp==",") || ...
          !strcmp(typeinfo(varargin{i}),"ex") )
        break;
      endif
      eqns{end+1} = varargin{i};
      arg_count = arg_count+1;
    endfor
  endif
  neqns = length(eqns);
  if neqns==0
    error("No equations specified.")
  endif

  ## make a list with all variables from equations
  tmp=eqns{1};
  for i=2:neqns
    tmp = tmp+eqns{i};
  endfor
  evars = findsymbols(tmp);
  nevars=length(evars);

  ## After the equations may follow initial values. The formats are:
  ##   [0 0.3 -3 ...]
  ##   x,0,y,0.3,z,-3,...
  ##   {x==0, y==0.3, z==-3 ...}
  ##   none - default of al zero initial values

  if arg_count==nargin
    vars = evars;
    nvars = nevars;
    X0 = zeros(nvars,1);
  elseif (nargin-arg_count)>1
    if mod(nargin-arg_count,2)
      error("Initial value symbol-value pairs don't match up.")
    endif
    for i=(arg_count+1):2:nargin
      tmp = disp(varargin{i});
      if all(isalnum(tmp) | tmp=="_" | tmp==",")
        vars{end+1} = varargin{i};
        X0((i-arg_count+1)/2)=varargin{i+1};
      else
        error("Error in symbol-value pair arguments.")
      endif
    endfor
    nvars = length(vars);
  else
    nvars = length(varargin{arg_count+1});
    if nvars!=nevars
      error("The number of initial conditions does not match the number of free variables.")
    endif
    if iscell(varargin{arg_count+1})
      ## cell-array of relations - this should work for a list of strings ("x==3") too.
      for i=1:nvars
        tmp = disp(varargin{arg_count+1}{i});
        vars{end+1} = sym (strtok (tmp, "=="));
        X0(i) = str2num(tmp((findstr(tmp,"==")+2):length(tmp)));
      endfor
    else
      ## straight numbers, match up with symbols in alphabetic order
      vars = evars;
      X0 = varargin{arg_count+1};
    endif
  endif

  ## X0 is now a vector, vars a list of variables.
  ## create temporary function:
  symfn = sprintf("function Y=symfn(X) ");
  for i=1:nvars
    symfn = [symfn sprintf("%s=X(%d); ",disp(vars{i}),i)];
  endfor
  for i=1:neqns
    symfn = [symfn sprintf("Y(%d)=%s; ",i,disp(eqns{i}))];
  endfor
  symfn = [symfn sprintf("endfunction")];

  eval(symfn);
  [x,inf,msg] = fsolve("symfn",X0);

endfunction

%!shared x,y,f,g
%! x = sym ("x");
%! y = sym ("y");
%! f = x ^ 2 + 3 * x - 1;
%! g = x * y - y ^ 2 + 3;
%!assert (symfsolve (f, g), [0.30278; -1.58727], 1e-5);
%!assert (symfsolve (f, g, x, 1, y, 5), [0.30278; 1.89004]', 1e-5);
%!assert (symfsolve (f, g, {x==1,y==5}), [0.30278; 1.89004]', 1e-5);
%!assert (symfsolve (f, g, [1 5]), [0.30278; 1.89004]', 1e-5);
%!assert (symfsolve ({f, g}, {y==1,x==2}), [1.89004; 0.30278]', 1e-5);