This file is indexed.

/usr/share/octave/packages/tsa-4.2.7/detrend.m is in octave-tsa 4.2.7-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [X,T]=detrend(t,X,p)
% DETREND removes the trend from data, NaN's are considered as missing values
% 
% DETREND is fully compatible to previous Matlab and Octave DETREND with the following features added:
% - handles NaN's by assuming that these are missing values
% - handles unequally spaced data
% - second output parameter gives the trend of the data
% - compatible to Matlab and Octave 
%
% [...]=detrend([t,] X [,p])
%	removes trend for unequally spaced data
%	t represents the time points
%	X(i) is the value at time t(i)
%	p must be a scalar
%
% [...]=detrend(X,0)
% [...]=detrend(X,'constant')
%	removes the mean
%
% [...]=detrend(X,p)
%	removes polynomial of order p (default p=1)
%
% [...]=detrend(X,1) - default
% [...]=detrend(X,'linear')
%	removes linear trend 
%
% [X,T]=detrend(...) 
%
% X is the detrended data
% T is the removed trend
% 
% see also: SUMSKIPNAN, ZSCORE		

% Copyright (C) 1995, 1996 Kurt Hornik <Kurt.Hornik@ci.tuwien.ac.at>
%       $Id: detrend.m 11693 2013-03-04 06:40:14Z schloegl $
%       Copyright (C) 2001,2007 by Alois Schloegl <a.schloegl@ieee.org>	
%       This function is part of the TSA-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/tsa/
%	Copyright (C) 1997, 1998, 2008 by Alois Schloegl <a.schloegl@ieee.org>
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.


if (nargin == 1)
    	p = 1;
       	X = t;
	t = [];
elseif (nargin == 2)
	if strcmpi(X,'constant'),
		p = 0; 
		X = t; 
		t = [];
	elseif strcmpi(X,'linear'),
		p = 1; 
		X = t; 
		t = [];
	elseif ischar(X)
		error('unknown 2nd input argument');	
        elseif all(size(X)==1), 
                p = X;
                X = t;
                t = [];
        else
                p = 1;
    	end;            
elseif (nargin == 3)
        if ischar(X),
		warning('input arguments are not supported');	
        end; 
        
elseif (nargin > 3)
    	fprintf (1,'usage: detrend (x [, p])\n');
end;

% check data, must be in culomn order
[m, n] = size (X);
if (m == 1)
        X = X';
        r=n;
else
        r=m;
end
% check time scale
if isempty(t),
	t = (1:r).'; % make time scale 
elseif ~all(size(t)==size(X)) 
        t = t(:);
end;
% check dimension of t and X
if ~all(size(X,1)==size(t,1))
        fprintf (2,'detrend: size(t,1) must same as size(x,1) \n');
end;
% check the order of the polynomial 
if (~(all(size(p)==1) & (p == round (p)) & (p >= 0)))
	fprintf (2,'detrend:  p must be a nonnegative integer\n');
end

if (nargout>1)  , % needs more memory
        T = zeros(size(X))+nan; 
        %T=repmat(nan,size(X)); % not supported by Octave 2.0.16
        
        
        if (size(t,2)>1),	% for multiple time scales
                for k=1:size(X,2),
	                idx=find(~isnan(X(:,k)));
                        b = (t(idx,k) * ones (1, p + 1)) .^ (ones (length(idx),1) * (0 : p));
		        T(idx,k) = b * (b \ X(idx,k));
		end;
        	        
        else			% if only one time scale is used
		b = (t * ones (1, p + 1)) .^ (ones (length(t),1) * (0 : p));
                for k=1:size(X,2),
	                idx=find(~isnan(X(:,k)));
		        T(idx,k) = b(idx,:) * (b(idx,:) \ X(idx,k));
	        	%X(idx,k) = X(idx,k) - T(idx,k); % 1st alternative implementation
                        %X(:,k) = X(:,k) - T(:,k); % 2nd alternative 
                end;
	end;
        X = X-T;  % 3nd alternative 
        
        if (m == 1)
	        X = X';
	        T = T';
	end
else % needs less memory
        if (size(t,2)>1),	% for multiple time scales
                for k = 1:size(X,2),
	                idx = find(~isnan(X(:,k)));
                        b = (t(idx,k) * ones (1, p + 1)) .^ (ones (length(idx),1) * (0 : p));
		        X(idx,k) = X(idx,k) -  b * (b \ X(idx,k));
		end;
        else			% if only one time scale is used
		b = (t * ones (1, p + 1)) .^ (ones (length(t),1) * (0 : p));
		for k = 1:size(X,2),
		        idx = find(~isnan(X(:,k)));
	        	X(idx,k) = X(idx,k) - b(idx,:) * (b(idx,:) \ X(idx,k));
		end;
	end;

        if (m == 1)
	        X = X';
	end
end;