This file is indexed.

/usr/share/octave/packages/tsa-4.2.7/mvaar.m is in octave-tsa 4.2.7-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function [x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman)
% Multivariate (Vector) adaptive AR estimation base on a multidimensional
% Kalman filer algorithm. A standard VAR model (A0=I) is implemented. The 
% state vector is defined as X=(A1|A2...|Ap) and x=vec(X')
%
% [x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman)
%
% The standard MVAR model is defined as:
%
%		y(n)-A1(n)*y(n-1)-...-Ap(n)*y(n-p)=e(n)
%
%	The dimension of y(n) equals s 
%	
%	Input Parameters:
%
% 		y			Observed data or signal 
% 		p			prescribed maximum model order (default 1)
%		UC			update coefficient	(default 0.001)
%		mode	 	update method of the process noise covariance matrix 0...4 ^
%					correspond to S0...S4 (default 0)
%
%	Output Parameters
%
%		e			prediction error of dimension s
%		x			state vector of dimension s*s*p
%		Q2			measurement noise covariance matrix of dimension s x s
%

%       $Id: mvaar.m 11693 2013-03-04 06:40:14Z schloegl $
% 	Copyright (C) 2001-2002 Christian Kasess  
% 	Copyright (C) 2003, 2008 Alois Schloegl    
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.


if nargin<4,
        mode=0;
end;
if nargin<3,
        UC=0.001   
end;
if nargin<2,
        p=1;
end
if nargin<1,
        fprintf(2,'No arguments supplied\n');
        return   
end;

if ~any(mode==(0:4))
        fprintf(2,'Invalid mode (0...4)\n');
        return   
end;


[M,LEN] = size(y');		%number of channels, total signal length
L = M*M*p;

if LEN<(p+1),
        fprintf(2,'Not enough observed data supplied for given model order\n');
        return   
end

ye = zeros(size(y));	%prediction of y

if nargout>1,
        x=zeros(L,LEN);
end;
if nargout>3,  
        Q2=zeros(M,M,LEN);
end



if nargin<5,
        %Kalman Filter initialsiation (Kp (K predicted or a-priori) equals K(n+1,n) )
        Kalman=struct('F',eye(L),'H',zeros(M,L),'G',zeros(L,M),'x',zeros(L,1),'Kp',eye(L),'Q1',eye(L)*UC,'Q2',eye(M),'ye',zeros(M,1));
        end;

upd = eye(L)/L*UC;		%diagonal matrix containing UC


if(mode==3)
        Block=kron(eye(M),ones(M*p));
        
elseif(mode==4)
        index=[];
        Block1=[];
        Block0=[];
        for i=1:M,
                index=[index ((i-1)*M*p+i:M:i*M*p)];
                mone=eye(M);
                mone(i,i)=0;
                mzero=eye(M)-mone;
                Block1=Blkdiag(Block1,kron(eye(p),mone));
                Block0=Blkdiag(Block0,kron(eye(p),mzero));
        end;
end;


for n = 2:LEN,
        if(n<=p)
                Yr=[y(n-1:-1:1,:)' zeros(M,p-n+1)];	%vector of past observations
                Yr=Yr(:)';
        else
                Yr=y(n-1:-1:n-p,:)';						%vector of past observations
                Yr=Yr(:)';
        end
        
        %Update of measurement matrix
        Kalman.H=kron(eye(M),Yr);
        
        
        %calculate prediction error
        ye(n,:)=(Kalman.H*Kalman.x)';
        err=y(n,:)-ye(n,:);
        
        if ~any(isnan(err(:))),
                %update of Q2 using the prediction error of the previous step
                Kalman.Q2=(1-UC)*Kalman.Q2+UC*err'*err;
                
                
                KpH=Kalman.Kp*Kalman.H';
                HKp=Kalman.H*Kalman.Kp;
                
                %Kalman gain
                Kalman.G=KpH*inv(Kalman.H*KpH+Kalman.Q2);
                
                %calculation of the a-posteriori state error covariance matrix
                %K=Kalman.Kp-Kalman.G*KpH'; Althouh PK is supposed to be symmetric, this operation makes the filter unstable
                K=Kalman.Kp-Kalman.G*HKp; 
                
                %mode==0 no update of Q1
                %update of Q1 using the predicted state error cov matrix
                if(mode==1)      
                        Kalman.Q1=diag(diag(K)).*UC;
                elseif(mode==2)
                        Kalman.Q1=upd*trace(K);
                elseif(mode==3)
                        Kalman.Q1=diag(sum((Block*diag(diag(K)))'))/(p*M)*UC;
                elseif(mode==4)
                        avg=trace(K(index,index))/(p*M)*UC;
                        Kalman.Q1=Block1*UC+Block0*avg;
                end
                
                %a-priori state error covariance matrix for the next time step
                Kalman.Kp=K+Kalman.Q1;
                
                %current estimation of state x
                Kalman.x=Kalman.x+Kalman.G*(err)';
        end; % isnan>(err)   
        
        if nargout>1,
                x(:,n) = Kalman.x;
        end;
        if nargout>3,
                Q2(:,:,n)=Kalman.Q2;   
        end;
end;

e = y - ye;
x = x';