/usr/include/paraview/vtkCamera.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkCamera.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkCamera - a virtual camera for 3D rendering
// .SECTION Description
// vtkCamera is a virtual camera for 3D rendering. It provides methods
// to position and orient the view point and focal point. Convenience
// methods for moving about the focal point also are provided. More
// complex methods allow the manipulation of the computer graphics
// model including view up vector, clipping planes, and
// camera perspective.
// .SECTION See Also
// vtkPerspectiveTransform
#ifndef __vtkCamera_h
#define __vtkCamera_h
#include "vtkRenderingCoreModule.h" // For export macro
#include "vtkObject.h"
class vtkHomogeneousTransform;
class vtkMatrix4x4;
class vtkPerspectiveTransform;
class vtkRenderer;
class vtkTransform;
class vtkCallbackCommand;
class vtkCameraCallbackCommand;
class VTKRENDERINGCORE_EXPORT vtkCamera : public vtkObject
{
public:
vtkTypeMacro(vtkCamera, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct camera instance with its focal point at the origin,
// and position=(0,0,1). The view up is along the y-axis,
// view angle is 30 degrees, and the clipping range is (.1,1000).
static vtkCamera *New();
// Description:
// Set/Get the position of the camera in world coordinates.
// The default position is (0,0,1).
void SetPosition(double x, double y, double z);
void SetPosition(const double a[3]) {
this->SetPosition(a[0], a[1], a[2]); };
vtkGetVector3Macro(Position, double);
// Description:
// Set/Get the focal of the camera in world coordinates.
// The default focal point is the origin.
void SetFocalPoint(double x, double y, double z);
void SetFocalPoint(const double a[3]) {
this->SetFocalPoint(a[0], a[1], a[2]);};
vtkGetVector3Macro(FocalPoint, double);
// Description:
// Set/Get the view up direction for the camera. The default
// is (0,1,0).
void SetViewUp(double vx, double vy, double vz);
void SetViewUp(const double a[3]) {
this->SetViewUp(a[0], a[1], a[2]); }
vtkGetVector3Macro(ViewUp, double);
// Description:
// Recompute the ViewUp vector to force it to be perpendicular to
// camera->focalpoint vector. Unless you are going to use
// Yaw or Azimuth on the camera, there is no need to do this.
void OrthogonalizeViewUp();
// Description:
// Move the focal point so that it is the specified distance from
// the camera position. This distance must be positive.
void SetDistance(double);
// Description:
// Return the distance from the camera position to the focal point.
// This distance is positive.
vtkGetMacro(Distance, double);
// Description:
// Get the vector in the direction from the camera position to the
// focal point. This is usually the opposite of the ViewPlaneNormal,
// the vector perpendicular to the screen, unless the view is oblique.
vtkGetVector3Macro(DirectionOfProjection, double);
// Description:
// Divide the camera's distance from the focal point by the given
// dolly value. Use a value greater than one to dolly-in toward
// the focal point, and use a value less than one to dolly-out away
// from the focal point.
void Dolly(double value);
// Description:
// Set the roll angle of the camera about the direction of projection.
void SetRoll(double angle);
double GetRoll();
// Description:
// Rotate the camera about the direction of projection. This will
// spin the camera about its axis.
void Roll(double angle);
// Description:
// Rotate the camera about the view up vector centered at the focal point.
// Note that the view up vector is whatever was set via SetViewUp, and is
// not necessarily perpendicular to the direction of projection. The
// result is a horizontal rotation of the camera.
void Azimuth(double angle);
// Description:
// Rotate the focal point about the view up vector, using the camera's
// position as the center of rotation. Note that the view up vector is
// whatever was set via SetViewUp, and is not necessarily perpendicular
// to the direction of projection. The result is a horizontal rotation
// of the scene.
void Yaw(double angle);
// Description:
// Rotate the camera about the cross product of the negative of the
// direction of projection and the view up vector, using the focal point
// as the center of rotation. The result is a vertical rotation of the
// scene.
void Elevation(double angle);
// Description:
// Rotate the focal point about the cross product of the view up vector
// and the direction of projection, using the camera's position as the
// center of rotation. The result is a vertical rotation of the camera.
void Pitch(double angle);
// Description:
// Set/Get the value of the ParallelProjection instance variable. This
// determines if the camera should do a perspective or parallel projection.
void SetParallelProjection(int flag);
vtkGetMacro(ParallelProjection, int);
vtkBooleanMacro(ParallelProjection, int);
// Description:
// Set/Get the value of the UseHorizontalViewAngle instance variable. If
// set, the camera's view angle represents a horizontal view angle, rather
// than the default vertical view angle. This is useful if the application
// uses a display device which whose specs indicate a particular horizontal
// view angle, or if the application varies the window height but wants to
// keep the perspective transform unchanges.
void SetUseHorizontalViewAngle(int flag);
vtkGetMacro(UseHorizontalViewAngle, int);
vtkBooleanMacro(UseHorizontalViewAngle, int);
// Description:
// Set/Get the camera view angle, which is the angular height of the
// camera view measured in degrees. The default angle is 30 degrees.
// This method has no effect in parallel projection mode.
// The formula for setting the angle up for perfect perspective viewing
// is: angle = 2*atan((h/2)/d) where h is the height of the RenderWindow
// (measured by holding a ruler up to your screen) and d is the
// distance from your eyes to the screen.
void SetViewAngle(double angle);
vtkGetMacro(ViewAngle, double);
// Description:
// Set/Get the scaling used for a parallel projection, i.e. the height
// of the viewport in world-coordinate distances. The default is 1.
// Note that the "scale" parameter works as an "inverse scale" ---
// larger numbers produce smaller images.
// This method has no effect in perspective projection mode.
void SetParallelScale(double scale);
vtkGetMacro(ParallelScale ,double);
// Description:
// In perspective mode, decrease the view angle by the specified factor.
// In parallel mode, decrease the parallel scale by the specified factor.
// A value greater than 1 is a zoom-in, a value less than 1 is a zoom-out.
void Zoom(double factor);
// Description:
// Set/Get the location of the near and far clipping planes along the
// direction of projection. Both of these values must be positive.
// How the clipping planes are set can have a large impact on how
// well z-buffering works. In particular the front clipping
// plane can make a very big difference. Setting it to 0.01 when it
// really could be 1.0 can have a big impact on your z-buffer resolution
// farther away. The default clipping range is (0.1,1000).
// Clipping distance is measured in world coordinate unless a scale factor
// exists in camera's ModelTransformMatrix.
void SetClippingRange(double dNear, double dFar);
void SetClippingRange(const double a[2])
{ this->SetClippingRange(a[0], a[1]); }
vtkGetVector2Macro(ClippingRange, double);
// Description:
// Set the distance between clipping planes. This method adjusts the
// far clipping plane to be set a distance 'thickness' beyond the
// near clipping plane.
void SetThickness(double);
vtkGetMacro(Thickness, double);
// Description:
// Set/Get the center of the window in viewport coordinates.
// The viewport coordinate range is ([-1,+1],[-1,+1]). This method
// is for if you have one window which consists of several viewports,
// or if you have several screens which you want to act together as
// one large screen.
void SetWindowCenter(double x, double y);
vtkGetVector2Macro(WindowCenter, double);
// Description:
// Get/Set the oblique viewing angles. The first angle, alpha, is the
// angle (measured from the horizontal) that rays along the direction
// of projection will follow once projected onto the 2D screen.
// The second angle, beta, is the angle between the view plane and
// the direction of projection. This creates a shear transform
// x' = x + dz*cos(alpha)/tan(beta), y' = dz*sin(alpha)/tan(beta)
// where dz is the distance of the point from the focal plane.
// The angles are (45,90) by default. Oblique projections
// commonly use (30,63.435).
void SetObliqueAngles(double alpha, double beta);
// Description:
// Apply a transform to the camera. The camera position, focal-point,
// and view-up are re-calculated using the transform's matrix to
// multiply the old points by the new transform.
void ApplyTransform(vtkTransform *t);
// Description:
// Get the ViewPlaneNormal. This vector will point opposite to
// the direction of projection, unless you have created an sheared output
// view using SetViewShear/SetObliqueAngles.
vtkGetVector3Macro(ViewPlaneNormal, double);
// Description:
// Set/get the shear transform of the viewing frustum. Parameters are
// dx/dz, dy/dz, and center. center is a factor that describes where
// to shear around. The distance dshear from the camera where
// no shear occurs is given by (dshear = center * FocalDistance).
void SetViewShear(double dxdz, double dydz, double center);
void SetViewShear(double d[3]);
vtkGetVector3Macro(ViewShear, double);
// Description:
// Set/Get the separation between eyes (in degrees). This is used
// when generating stereo images.
vtkSetMacro(EyeAngle, double);
vtkGetMacro(EyeAngle, double);
// Description:
// Set the size of the cameras lens in world coordinates. This is only
// used when the renderer is doing focal depth rendering. When that is
// being done the size of the focal disk will effect how significant the
// depth effects will be.
vtkSetMacro(FocalDisk, double);
vtkGetMacro(FocalDisk, double);
// Description:
// Set/Get use offaxis frustum.
// OffAxis frustum is used for off-axis frustum calculations specificly
// for stereo rendering.
// For reference see "High Resolution Virtual Reality", in Proc.
// SIGGRAPH '92, Computer Graphics, pages 195-202, 1992.
vtkSetMacro(UseOffAxisProjection, int);
vtkGetMacro(UseOffAxisProjection, int);
vtkBooleanMacro(UseOffAxisProjection, int);
// Description:
// Set/Get top left corner point of the screen.
// This will be used only for offaxis frustum calculation.
// Default is (-1.0, -1.0, -1.0).
vtkSetVector3Macro(ScreenBottomLeft, double);
vtkGetVector3Macro(ScreenBottomLeft, double);
// Description:
// Set/Get bottom left corner point of the screen.
// This will be used only for offaxis frustum calculation.
// Default is (1.0, -1.0, -1.0).
vtkSetVector3Macro(ScreenBottomRight, double);
vtkGetVector3Macro(ScreenBottomRight, double);
// Description:
// Set/Get top right corner point of the screen.
// This will be used only for offaxis frustum calculation.
// Default is (1.0, 1.0, -1.0).
vtkSetVector3Macro(ScreenTopRight, double);
vtkGetVector3Macro(ScreenTopRight, double);
// Description:
// Set/Get distance between the eyes.
// This will be used only for offaxis frustum calculation.
// Default is 0.06.
vtkSetMacro(EyeSeparation, double);
vtkGetMacro(EyeSeparation, double);
// Description:
// Set/Get the eye position (center point between two eyes).
// This is a convenience function that sets the translation
// component of EyeTransformMatrix.
// This will be used only for offaxis frustum calculation.
void SetEyePosition(double eyePosition[3]);
void GetEyePosition(double eyePosition[3]);
// Description:
// Get normal vector from eye to screen rotated by EyeTransformMatrix.
// This will be used only for offaxis frustum calculation.
void GetEyePlaneNormal(double normal[3]);
// Description:
// Set/Get eye transformation matrix.
// This is the transformation matrix for the point between eyes.
// This will be used only for offaxis frustum calculation.
// Default is identity.
void SetEyeTransformMatrix(vtkMatrix4x4* matrix);
vtkGetObjectMacro(EyeTransformMatrix, vtkMatrix4x4);
// Description:
// Set the eye transform matrix.
// This is the transformation matrix for the point between eyes.
// This will be used only for offaxis frustum calculation.
// Default is identity.
void SetEyeTransformMatrix(const double elements[16]);
// Description:
// Set/Get model transformation matrix.
// This matrix could be used for model related transformations
// such as scale, shear, roations and translations.
void SetModelTransformMatrix(vtkMatrix4x4 *matrix);
vtkGetObjectMacro(ModelTransformMatrix, vtkMatrix4x4);
// Description:
// Set model transformation matrix.
// This matrix could be used for model related transformations
// such as scale, shear, roations and translations.
void SetModelTransformMatrix(const double elements[16]);
// Description:
// Return the model view matrix of model view transform.
virtual vtkMatrix4x4 *GetModelViewTransformMatrix();
// Description:
// Return the model view transform.
virtual vtkTransform *GetModelViewTransformObject();
// Description:
// For backward compatibility. Use GetModelViewTransformMatrix() now.
// Return the matrix of the view transform.
// The ViewTransform depends on only three ivars: the Position, the
// FocalPoint, and the ViewUp vector. All the other methods are there
// simply for the sake of the users' convenience.
virtual vtkMatrix4x4 *GetViewTransformMatrix();
// Description:
// For backward compatibility. Use GetModelViewTransformObject() now.
// Return the view transform.
// If the camera's ModelTransformMatrix is identity then
// the ViewTransform depends on only three ivars:
// the Position, the FocalPoint, and the ViewUp vector.
// All the other methods are there simply for the sake of the users'
// convenience.
virtual vtkTransform *GetViewTransformObject();
// Description:
// Return the projection transform matrix, which converts from camera
// coordinates to viewport coordinates. The 'aspect' is the
// width/height for the viewport, and the nearz and farz are the
// Z-buffer values that map to the near and far clipping planes.
// The viewport coordinates of a point located inside the frustum are in the
// range ([-1,+1],[-1,+1],[nearz,farz]).
virtual vtkMatrix4x4 *GetProjectionTransformMatrix(double aspect,
double nearz,
double farz);
// Description:
// Return the projection transform matrix, which converts from camera
// coordinates to viewport coordinates. The 'aspect' is the
// width/height for the viewport, and the nearz and farz are the
// Z-buffer values that map to the near and far clipping planes.
// The viewport coordinates of a point located inside the frustum are in the
// range ([-1,+1],[-1,+1],[nearz,farz]).
virtual vtkPerspectiveTransform *GetProjectionTransformObject(double aspect,
double nearz,
double farz);
// Description:
// Return the concatenation of the ViewTransform and the
// ProjectionTransform. This transform will convert world
// coordinates to viewport coordinates. The 'aspect' is the
// width/height for the viewport, and the nearz and farz are the
// Z-buffer values that map to the near and far clipping planes.
// The viewport coordinates of a point located inside the frustum are in the
// range ([-1,+1],[-1,+1],[nearz,farz]).
virtual vtkMatrix4x4 *GetCompositeProjectionTransformMatrix(double aspect,
double nearz,
double farz);
// Description:
// In addition to the instance variables such as position and orientation,
// you can add an additional transformation for your own use. This
// transformation is concatenated to the camera's ViewTransform
void SetUserViewTransform(vtkHomogeneousTransform *transform);
vtkGetObjectMacro(UserViewTransform,vtkHomogeneousTransform);
// Description:
// In addition to the instance variables such as position and orientation,
// you can add an additional transformation for your own use. This
// transformation is concatenated to the camera's ProjectionTransform
void SetUserTransform(vtkHomogeneousTransform *transform);
vtkGetObjectMacro(UserTransform,vtkHomogeneousTransform);
// Description:
// This method causes the camera to set up whatever is required for
// viewing the scene. This is actually handled by an subclass of
// vtkCamera, which is created through New()
virtual void Render(vtkRenderer *) {}
// Description:
// Return the MTime that concerns recomputing the view rays of the camera.
unsigned long GetViewingRaysMTime();
// Description:
// Mark that something has changed which requires the view rays
// to be recomputed.
void ViewingRaysModified();
// Description:
// Get the plane equations that bound the view frustum.
// The plane normals point inward. The planes array contains six
// plane equations of the form (Ax+By+Cz+D=0), the first four
// values are (A,B,C,D) which repeats for each of the planes.
// The planes are given in the following order: -x,+x,-y,+y,-z,+z.
// Warning: it means left,right,bottom,top,far,near (NOT near,far)
// The aspect of the viewport is needed to correctly compute the planes
virtual void GetFrustumPlanes(double aspect, double planes[24]);
// Description:
// Get the orientation of the camera.
double *GetOrientation();
double *GetOrientationWXYZ();
// Description:
// This method is called automatically whenever necessary, it
// should never be used outside of vtkCamera.cxx.
void ComputeViewPlaneNormal();
// Description:
// Returns a transformation matrix for a coordinate frame attached to
// the camera, where the camera is located at (0, 0, 1) looking at the
// focal point at (0, 0, 0), with up being (0, 1, 0).
vtkMatrix4x4 *GetCameraLightTransformMatrix();
// Description:
// Update the viewport
virtual void UpdateViewport(vtkRenderer *vtkNotUsed(ren)) {}
// Description:
// Set the Left Eye setting
vtkSetMacro(LeftEye, int);
vtkGetMacro(LeftEye, int);
// Description:
// Copy the properties of `source' into `this'.
// Copy pointers of matrices.
// \pre source_exists!=0
// \pre not_this: source!=this
void ShallowCopy(vtkCamera *source);
// Description:
// Copy the properties of `source' into `this'.
// Copy the contents of the matrices.
// \pre source_exists!=0
// \pre not_this: source!=this
void DeepCopy(vtkCamera *source);
// Description:
// Set/Get the value of the FreezeDolly instance variable. This
// determines if the camera should move the focal point with the camera position.
// HACK!!!
vtkSetMacro(FreezeFocalPoint, bool);
vtkGetMacro(FreezeFocalPoint, bool);
protected:
vtkCamera();
~vtkCamera();
// Description:
// These methods should only be used within vtkCamera.cxx.
void ComputeDistance();
void ComputeViewTransform();
// Description:
// These methods should only be used within vtkCamera.cxx.
void ComputeProjectionTransform(double aspect,
double nearz,
double farz);
// Description:
// These methods should only be used within vtkCamera.cxx.
void ComputeCompositeProjectionTransform(double aspect,
double nearz,
double farz);
void ComputeCameraLightTransform();
// Description:
// Given screen screen top, bottom left and top right
// calculate screen rotation.
void ComputeWorldToScreenMatrix();
// Description:
// Compute and use frustum using offaxis method.
void ComputeOffAxisProjectionFrustum();
// Description:
// Compute model view matrix for the camera.
void ComputeModelViewMatrix();
// Description:
// Copy the ivars. Do nothing for the matrices.
// Called by ShallowCopy() and DeepCopy()
// \pre source_exists!=0
// \pre not_this: source!=this
void PartialCopy(vtkCamera *source);
double WindowCenter[2];
double ObliqueAngles[2];
double FocalPoint[3];
double Position[3];
double ViewUp[3];
double ViewAngle;
double ClippingRange[2];
double EyeAngle;
int ParallelProjection;
double ParallelScale;
int Stereo;
int LeftEye;
double Thickness;
double Distance;
double DirectionOfProjection[3];
double ViewPlaneNormal[3];
double ViewShear[3];
int UseHorizontalViewAngle;
int UseOffAxisProjection;
double ScreenBottomLeft[3];
double ScreenBottomRight[3];
double ScreenTopRight[3];
double EyeSeparation;
vtkMatrix4x4 *WorldToScreenMatrix;
vtkTimeStamp WorldToScreenMatrixMTime;
vtkMatrix4x4 *EyeTransformMatrix;
vtkMatrix4x4 *ModelTransformMatrix;
vtkHomogeneousTransform *UserTransform;
vtkHomogeneousTransform *UserViewTransform;
vtkTransform *ViewTransform;
vtkPerspectiveTransform *ProjectionTransform;
vtkPerspectiveTransform *Transform;
vtkTransform *CameraLightTransform;
vtkTransform *ModelViewTransform;
double FocalDisk;
//BTX
vtkCameraCallbackCommand *UserViewTransformCallbackCommand;
friend class vtkCameraCallbackCommand;
//ETX
// ViewingRaysMtime keeps track of camera modifications which will
// change the calculation of viewing rays for the camera before it is
// transformed to the camera's location and orientation.
vtkTimeStamp ViewingRaysMTime;
bool FreezeFocalPoint;
private:
vtkCamera(const vtkCamera&); // Not implemented.
void operator=(const vtkCamera&); // Not implemented.
};
#endif
|